На главную

Статья по теме: Надмолекулярную структуру

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Принципиально важным признаком, отличающим надмолекулярную структуру полимера от надмолекулярной структуры жидкости, является взаимосвязанность всех флуктуации плотности. Это обусловлено тем, что одна и та же макромолекула проходит через несколько уплотненных микрообъемов. Такие молекулы называют проходными. Ассоциация сегментов в микрообъеме обеспечивает повышенное межмолекулярное взаимодействие и сегменты оказы-[4, С.98]

Введение фенолоформальдегидной смолы позволяет регулировать надмолекулярную структуру покрытия, обеспечивая эффективные защитные свойства в течение длительного времени [48]. Фенолоформальдегидную смолу можно вводить в ХСПЭ во время пластикации на вальцах с последующим переводом в раствор или[10, С.173]

Ориентированные полимеры имеют фибриллярную (волокнопо-добную) надмолекулярную структуру, основным элементом которой является микрофибрилла. Микрофибриллы по своему строению гетерогенны: они состоят из периодически чередующихся областей большей и меньшей плотности, соответственно из кристаллических и аморфных областей. Период повторяемости упорядоченных и неупорядоченных участков вдоль оси микрофибриллы (так называемые большие периоды), определяемый рентгенографическим методом путем съемки под малыми углами, в зависимости от природы полимера и условий ориентации и последующего отжига варьируется в пределах от нескольких единиц до нескольких десятков нанометров. Большие периоды обычно возрастают при повышении температуры ориентации и отжига. Микрофибриллы имеют достаточно четкие боковые границы, а периодическое чередование упорядоченных и неупорядоченных областей является их характерной особенностью.[3, С.180]

Проводимость полупроводников с сопряженными связями можно изменять, изменяя их надмолекулярную структуру. Гели образование надмолекулярной структуры связано с повышением компланарности расположения двойных связей, то АЕ снижается и проводимость растет, при нарушении компланарности проводимость, как правило, уменьшается в связи с увеличением энергетического барьера перескока между молекулами. Это объясняет увеличение проводимости с ростом степени ориентации и при повышении давления.[7, С.385]

В высокоэластическом состоянии (см. гл. 7) полимеры имеют в целом неупорядоченную надмолекулярную структуру, в которой имеются как более упорядоченные, так и менее упорядоченные элементы (см. рис. 7.5). Поэтому говорят, что полимер имеет жидкостную структуру, которая характеризуется наличием ближнего порядка. В полимере понятие ближнего порядка относится не к молекулам, а к их сегментам, которые образуют ассоциаты (узлы флуктуационной сетки) с наиболее выраженным ближним порядком. В низкомолекулярной жидкости регулярность в расположении молекул существует только между соседними молекулами; уже на расстоянии 4 или 5 молекулярных диаметров эта регулярность полностью исчезает. В полимерах размеры упорядоченных областей могут быть много больше.[4, С.142]

Критерий растворимости (345) справедлив для случая изотропных аморфных полимеров, имеющих глобулярную надмолекулярную структуру.Кро-ме того, данный критерий не учитывает влияние степени полимеризации полимера на растворимость, хотя известно, что оно может быть существенным при переходе к большим молекулярным массам. В работе [95] сделана попытка учесть влияние типа надмолекулярной структуры и степени полимеризации полимеров на его растворимость, а также установить связь между параметрами теории Флори-Хаггинса и химическим строением полимера и растворителя.[5, С.346]

Водородные связи в целлюлозе имеют очень важное значение. Они определяют физическую структуру целлюлозы (форму макромолекул, фазовые и релаксационные состояния, надмолекулярную структуру) и оказывают влияние на все свойства целлюлозы - физические, физико-химические и химические (химическую реакционную способность).[8, С.235]

Особенности надмолекулярной структуры полимеров еще не до конца изучены, причем не последнюю роль в исследованиях играет изучение надмолекулярной структуры целлюлозы. В настоящее время надмолекулярную структуру как аморфных, так и кристаллических полимеров, синтетических и природных, рассматривают с позиций кластерной теории, позволяющей глубже проникнуть в детали микроструктуры.[8, С.130]

Выражение (3.5-1) показывает, что с увеличением гидростатического давления температура плавления существенно повышается. Это означает, что, если охладить находящийся под давлением расплав до температуры кристаллизации, то в действительности он окажется очень сильно переохлажденным. Влияние этого переохлаждения на надмолекулярную структуру (морфологию сферолитов) и скорость кристаллизации подробно рассмотрено в разд. 3.4. Очевидно, если фактическая температура кристаллизации с учетом влияния давления окажется сдвинутой вправо по отношению к температуре максимальной скорости кристаллизации (Т$), наличие давления приведет к увеличению скорости кристаллизации. В том случае, если Тс < Т$, скорость кристаллизации уменьшится. Скорость зародышеобразования при увеличении степени переохлаждения будет возрастать.[1, С.58]

Книга заканчивается рассмотрением ряда способов формования, применяемых в технологии переработки полимеров. И опять каждый из этих методов формования рассматривается независимо от какого-либо конкретного метода переработки. В дополнение к логической классификации методов формования мы рассматриваем влияние переработки на надмолекулярную структуру, обусловленное механической ориентацией макромолекул при переработке, зафиксированной вследствие быстрого охлаждения.[1, С.11]

Мы отмечали выше, что макромолекулярный клубок в изолированном состоянии «почти пустой» — в нем только 1—3% объема занимает полимер. В массе полимера свободный объем внутри молекулярного клубка занимают элементы соседних молекул. Возникает довольно своеобразная надмолекулярная структура полимера: макромолекулы в нем хаотически перепутаны, но при этом в основном сохраняют форму клубков, в то же время части макромолекул— их сегменты — образуют структуру, подобную структуре низкомолекулярной жидкости с наличием довольно протяженных микрообъемов ближнего порядка. Высокая гибкость макромолекул обеспечивает не только определенную надмолекулярную структуру, но и достаточную среднюю плотность упаковки сегментов, малый свободный объем, так что полимер, подобно низкомолекуляр-[4, С.97]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
6. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Бартенев Г.М. Физика полимеров, 1990, 433 с.
10. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
11. Пашин Ю.А. Фторопласты, 1978, 233 с.
12. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
13. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
14. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
15. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
18. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
19. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
20. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
21. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
22. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
23. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
24. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
25. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
26. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
27. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
28. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
29. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
30. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
31. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
32. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную