Использование специальных электропроводящих типов технического углерода позволяет получать резины, электропроводность которых достигает значений 103-104 Ом"1 • м"1. Рассматривая концентрационную зависимость электропроводности наполненных эластомеров, следует иметь в виду, что при введении наполнителя механизм электропроводности изменяется. Возможность получения резин с электропроводностью, изменяющейся в широком интервале — от значений, характерных для диэлектриков, до значений, позволяющих использовать эластомерные композиции в качестве токопрово-дящих материалов, обеспечивает все возрастающее применение эластомеров в электротехнике.[1, С.73]
Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных -у- и (3-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а'-переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя: Кг, 1г и Яз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а 6-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу.[2, С.129]
Для сшитых полярных бутадиен-нитрильных эластомеров кроме Xr, KZ- и Яз-процессов проявляется зт-процесс (рис. 5.6), о природе которого было сказано выше. Все Х-процессы независимо от содержания в полимере нитрильных групп имеют одну и ту же энергию активации (50 кДж/моль), а л-процесс характеризуется энергией активации, изменяющейся по мере увеличения содержания нитрильных групп в макромолекуле от 88 до 96 кДж/моль, и соответственно большим временем релаксации (порядка 106 с при 293 К). Процесс химической релаксации ненаполненных и наполненных эластомеров, сшитых серными поперечными связями, характеризуется энергией активации [/= (126±8) кДж/моль независимо от типа эластомера. В роли кинетической отдельности в этом случае выступает поперечная химическая связь вместе со звеньями, которые она соединяет. Поэтому ее объем должен быть меньшим, чем объем сег-[2, С.134]
Следовательно, если обозначить через у* обобщенный структурный параметр, то фон внутреннего трения можно рассматривать в виде функции KQ=f(T, v, a, D, у*). Процессы а' и ср исчезают, если нет активного наполнителя, процесс 6 исчезает, если нет вулканиза-ционной сетки; Хгпроцессы ответственны за вязкое течение и реологические свойства полимеров, а также за их деформационные свойства при малых напряжениях а<сгкр (сгкр — критическое напряжение, связанное с разрушением надмолекулярных структур полимеров или сажекаучуковых структур в случае наполненных эластомеров). Нелинейная часть кривой a=f(t) относится к физическим, а линейная — к химическим релаксационным процессам. Значение энергии активации и процесса физической релаксации равно 42— 63 кДж/моль, а в случае химической релаксации оно составляет (126+8) кДж/моль. При этом для трех первых процессов U практически одинакова и составляет 55 кДж/моль для эластомера СКС-30.[2, С.140]
Для наполненных эластомеров проявляется явление виброрелаксации, связанное с подвижностью сажекаучуковой структуры. Как видно из рис. 5.14, наложение вибрации в точке А приводит к уско-[2, С.142]
Новый подход к изучению набухания наполненных эластомеров развит в работе [86], автор которой исходит из представлений о негомогенном поле напряжений, возникающем в результате ограничения набухания на границе раздела полимер — частица наполг нителя. Система рассматривается как состоящая из сферических включений, погруженных в матрицу и окруженных слоем сшитого эластомера, а матрица — как гомогенная и свободная от напряжений. Поле деформаций и напряжений является функцией расстояния от поверхности частицы, которая затем учитывается при термодинамическом вычислении изменения изобарно-изотермического потенциала при набухании для деформированной эластичной сетки.[5, С.43]
Особо важное значение имеет кристаллизация наполненных эластомеров. При введении наполнителей в эластомеры кристаллизация обычно ускоряется [136]. Например, полупериод кристаллизации уменьшается с ростом концентраций сажи даже при ее содержании до 60 масс, ч.; одновременно уменьшается константа п в уравнении Аврами. Ускоряющее влияние наполнителя на кристаллизацию вулканизата тем сильнее, чем выше активность наполнителя. Однако в ряде случаев введение наполнителей в эластомеры может. приводить и к уменьшению скорости кристаллизации.[5, С.71]
Трехмерную ЯМР-спектроскопию используют для исследования промышленных шин, а также наполненных эластомеров и их двойных и тройных смесей [33]. Для образцов сантиметрового размера с временем спин-решеточной релаксации TI в интервале 200-50 мс и спин-спиновой релаксации Т2 0,5-2 мс получение изображения занимает несколько минут. При этом достигается пространственное разрешение 0,5-1 мм, достаточное для обнаружения морфологических дефектов. В образцах меньшего размера за несколько часов можно получить разрешение менее 100 нм, определить ориентацию корда и другие детали структуры.[3, С.276]
Полидисперсность наполнителя оказывает заметное влияние на упругие и прочностные свойства наполненных эластомеров. Фаррис [6] показал, что модуль наполненного эластомера снижается при дополнительном введении неболь-[4, С.131]
Как следует из рис. 1, увеличение размера частиц приводит к более существенным изменениям объема при растяжении наполненных эластомеров' (пунктирные кривые со штрихом), что также свидетельствует в пользу концепции отрыва цепочек эластомера от поверхности наполнителя (слабоусиливающий наполнитель—полистирол). Однако данные Обер-са [5], Гесса и Форда [7] и многие другие указывают на недостаточность одной концепции отрыва полимерных цепей от поверхности наполнителя для объяснения его влияния на прочностные свойства эластомера.[4, С.132]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.