На главную

Статья по теме: Наполненных эластомеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Использование специальных электропроводящих типов технического углерода позволяет получать резины, электропроводность которых достигает значений 103-104 Ом"1 • м"1. Рассматривая концентрационную зависимость электропроводности наполненных эластомеров, следует иметь в виду, что при введении наполнителя механизм электропроводности изменяется. Возможность получения резин с электропроводностью, изменяющейся в широком интервале — от значений, характерных для диэлектриков, до значений, позволяющих использовать эластомерные композиции в качестве токопрово-дящих материалов, обеспечивает все возрастающее применение эластомеров в электротехнике.[1, С.73]

Релаксационные переходы в полимерах проявляются на разных уровнях их молекулярной и надмолекулярной организации. Данные релаксационной спектрометрии для медленных релаксационных процессов показывают, что на непрерывном спектре времен релаксации (см. рис. 5.1) сшитых наполненных эластомеров кроме известных -у- и (3-переходов, связанных с мелкомасштабными движениями боковых групп и малых участков макромолекул, и а-перехо-да, связанного с подвижностью свободных сегментов неупорядоченной части эластомера, наблюдается еще 6—8 переходов, которые большей частью могут быть отнесены к медленным релаксационным процессам. Некоторые из них характерны лишь для неполярных эластомеров. Так, а'-переход, обязан потере подвижности сегментов в жесткой части каучука, адсорбированного на частицах активного наполнителя: Кг, 1г и Яз-переходы объединяют группу из релаксационных процессов (штриховая часть кривой), связанных с временами жизни упорядоченных микрообластей (микроблоков трех типов), ф-переход соответствует подвижности самих частиц наполнителей как узлов сетки полимера, а 6-переход соответствует химической релаксации, связанной с подвижностью химических поперечных связей, наблюдаемой в условиях эксплуатации при длительных временах наблюдения. Предполагается, что каждый максимум на непрерывном спектре соответствует отдельному релаксационному переходу.[2, С.129]

Для сшитых полярных бутадиен-нитрильных эластомеров кроме Xr, KZ- и Яз-процессов проявляется зт-процесс (рис. 5.6), о природе которого было сказано выше. Все Х-процессы независимо от содержания в полимере нитрильных групп имеют одну и ту же энергию активации (50 кДж/моль), а л-процесс характеризуется энергией активации, изменяющейся по мере увеличения содержания нитрильных групп в макромолекуле от 88 до 96 кДж/моль, и соответственно большим временем релаксации (порядка 106 с при 293 К). Процесс химической релаксации ненаполненных и наполненных эластомеров, сшитых серными поперечными связями, характеризуется энергией активации [/= (126±8) кДж/моль независимо от типа эластомера. В роли кинетической отдельности в этом случае выступает поперечная химическая связь вместе со звеньями, которые она соединяет. Поэтому ее объем должен быть меньшим, чем объем сег-[2, С.134]

Следовательно, если обозначить через у* обобщенный структурный параметр, то фон внутреннего трения можно рассматривать в виде функции KQ=f(T, v, a, D, у*). Процессы а' и ср исчезают, если нет активного наполнителя, процесс 6 исчезает, если нет вулканиза-ционной сетки; Хгпроцессы ответственны за вязкое течение и реологические свойства полимеров, а также за их деформационные свойства при малых напряжениях а<сгкр (сгкр — критическое напряжение, связанное с разрушением надмолекулярных структур полимеров или сажекаучуковых структур в случае наполненных эластомеров). Нелинейная часть кривой a=f(t) относится к физическим, а линейная — к химическим релаксационным процессам. Значение энергии активации и процесса физической релаксации равно 42— 63 кДж/моль, а в случае химической релаксации оно составляет (126+8) кДж/моль. При этом для трех первых процессов U практически одинакова и составляет 55 кДж/моль для эластомера СКС-30.[2, С.140]

Для наполненных эластомеров проявляется явление виброрелаксации, связанное с подвижностью сажекаучуковой структуры. Как видно из рис. 5.14, наложение вибрации в точке А приводит к уско-[2, С.142]

Новый подход к изучению набухания наполненных эластомеров развит в работе [86], автор которой исходит из представлений о негомогенном поле напряжений, возникающем в результате ограничения набухания на границе раздела полимер — частица наполг нителя. Система рассматривается как состоящая из сферических включений, погруженных в матрицу и окруженных слоем сшитого эластомера, а матрица — как гомогенная и свободная от напряжений. Поле деформаций и напряжений является функцией расстояния от поверхности частицы, которая затем учитывается при термодинамическом вычислении изменения изобарно-изотермического потенциала при набухании для деформированной эластичной сетки.[5, С.43]

Особо важное значение имеет кристаллизация наполненных эластомеров. При введении наполнителей в эластомеры кристаллизация обычно ускоряется [136]. Например, полупериод кристаллизации уменьшается с ростом концентраций сажи даже при ее содержании до 60 масс, ч.; одновременно уменьшается константа п в уравнении Аврами. Ускоряющее влияние наполнителя на кристаллизацию вулканизата тем сильнее, чем выше активность наполнителя. Однако в ряде случаев введение наполнителей в эластомеры может. приводить и к уменьшению скорости кристаллизации.[5, С.71]

Трехмерную ЯМР-спектроскопию используют для исследования промышленных шин, а также наполненных эластомеров и их двойных и тройных смесей [33]. Для образцов сантиметрового размера с временем спин-решеточной релаксации TI в интервале 200-50 мс и спин-спиновой релаксации Т2 0,5-2 мс получение изображения занимает несколько минут. При этом достигается пространственное разрешение 0,5-1 мм, достаточное для обнаружения морфологических дефектов. В образцах меньшего размера за несколько часов можно получить разрешение менее 100 нм, определить ориентацию корда и другие детали структуры.[3, С.276]

Рис. 5.14. Процессы релаксации нормального напряжения (1) в виброрелаксации (2) для саженаполненных эластомеров[2, С.142]

Полидисперсность наполнителя оказывает заметное влияние на упругие и прочностные свойства наполненных эластомеров. Фаррис [6] показал, что модуль наполненного эластомера снижается при дополнительном введении неболь-[4, С.131]

Как следует из рис. 1, увеличение размера частиц приводит к более существенным изменениям объема при растяжении наполненных эластомеров' (пунктирные кривые со штрихом), что также свидетельствует в пользу концепции отрыва цепочек эластомера от поверхности наполнителя (слабоусиливающий наполнитель—полистирол). Однако данные Обер-са [5], Гесса и Форда [7] и многие другие указывают на недостаточность одной концепции отрыва полимерных цепей от поверхности наполнителя для объяснения его влияния на прочностные свойства эластомера.[4, С.132]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
5. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
6. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
7. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.

На главную