На главную

Статья по теме: Оказывают существенное

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени совершенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение.[4, С.138]

Химическое строение полимера, его конфигурация, молекулярная масса оказывают существенное влияние на процесс кристаллизации, в частности на кинетику зародышеобразования и роста кристаллов. Повышение энергии когезии полимера приводит к уменьшению энергии зародышеобразоваиия и к увеличению энергии роста кристалла. Определяющее влияние оказывает второй фактор, в результате чего общая скорость кристаллизации снижается. В качестве примера рассмотрим гибкие по [имеры:[9, С.276]

Многие примеси, присутствие которых обусловлено специфическими особенностями получения синтетических каучуков, оказывают существенное влияние на их стабильность. К числу таких примесей в первую очередь следует отнести соединения металлов переменной валентности, наличие которых может быть обусловлено рядом причин: а) применением катализаторов на основе этих металлов; б) коррозией аппаратуры; в) недостаточной чистотой сырья, применяемого при получении и выделении каучуков.[1, С.628]

В приведенном кратком качественном рассмотрении не учтены полярные и пространственные эффекты, которые в ряде случаев оказывают существенное влияние на энергии активации радикальных процессов. Теория, рассматривающая реакционную способность мономеров и радикалов только с учетом энергий сопряжения и не учитывающая полярных и пространственных эффектов, называется теорией идеальной радикальной реакционной способности.[5, С.10]

Влияние РТФ на свойства диенуретановых эластомеров показано на примере полибутадиендиолов радикальной полимеризации в работе [71]. Реакционная способность концевых групп в жидких каучуках и их функциональность оказывают существенное влияние на свойства эластомеров вследствие особенностей формирования пространственной сетки при структурировании жидких каучуков.[1, С.443]

Хотя в полимерных расплавах равновесное значение плотности устанавливается очень быстро после достижения равновесных значений давления и температуры [т. е. р = р (Р, Т) ], вблизи и ниже Т8 или Тт плотность полимера уже не определяется однозначно температурой и давлением. На величину плотности в некоторый момент времени оказывают существенное влияние температура отжига, время и скорость охлаждения или, как правило, вся термическая предыстория образца [25]. Таким образом, р = р (Т, Р, t).[3, С.126]

Форма макромолекул в растворе. Под влиянием колебательно вращательных движений макромолекулы полимера принимают в растворах самые разнообразные формы. Разнообразие форм макромолекул, определяющееся гибкостью цепи полимера, зависит от его структуры, длины цепи, характера и количества заместителей в элементарных звеньях. Длинная цепь полимера более гибка, чем короткая одинакового строения. Предельными формами макромолекул в растворе являются вытянутая нить или нить, спутанная в рыхлый клубок. Из многочисленных возможных конформаций линейные макромолекулы стремятся занять такое положение, которое в наибольшей степени отвечает равновесному состоянию данной системы, т. е. состоянию, соответствующему минимуму потенциальной энергии. Изменению формы цепных молекул препятствуют внутримолекулярные силы взаимодействия между соседними атомами и группами атомов в самой макромолекуле. Поэтому макромолекулы с большим внутримолекулярным взаимодействием не отличаются разнообразием конформационного состава в растворе. Многообразие конформаций макромолекул в растворе определяется также величиной сил межмолекулярного взаимодействия. При разбавлении растворов силы межмолекулярного взаимодействия убывают, что приводит к повышению подвижности отдельных сегментов макромолекул. На форму макромолекул в растворе оказывают существенное влияние также характер растворителя и температура раствора. При отсутствии взаимодействия с растворителем и повышении температуры гибкость цепей увеличивается, поэтому возрастает вероятность различных конформаций макромолекул.[2, С.66]

Пластификаторы оказывают существенное влияние на температуру переработки этролов [184, 185]. Для формования литьевых изделий из композиций ацетата целлюлозы, содержащих небольшое количество пластификатора, рекомендуется осуществлять переработку непосредственно из формовочных порошков, исключая стадию получения этролов [186].[12, С.164]

Пластификаторы оказывают существенное влияние на горючесть пластифицированных полимеров. Низкомолекулярные пластификаторы типа сложных эфиров дикарбоновых кислот, находящиеся в пластифицированном полимере, при контакте с пламенем выделяются из пленки, а затем воспламеняются. Скорость горения пластификатора зависит от его состава и условий, в которых про-, исходит горение. ПВХ-пластикаты, содержащие хлорированные парафины различной степени хлорирования, воспламеняются с трудом. Хорошие результаты по огнестойкости получаются и при частичной замене диэфирного пластификатора хлорированными парафинами [363—368] или галогенсодержащими диэфирами [369—371].[12, С.186]

Пластификаторы оказывают существенное влияние на свойства смесей и вулканизатов Б.-н. к. В качестве пластификаторов для Б.-н. к. используют: 1) сложные эфиры (дибутилфталат, диоктилфталат, ди-бутилсебацинат и др.), к-рыо применяют гл. обр. для повышения морозостойкости и эластичности вулканизатов; 2) природные и синтетич. смолы (канифоль, сосновая, кумароно-инденовые и феноло-формальдегидные смолы), повышающие клейкость смесей (кумароцо-инде-новые смолы придают вулканизатам также и высокие прочностные свойства); 3) продукты нефтяного происхождения (гл. обр. высокоароматизированные), применение к-рых позволяет получать вулканизаты с высоким относительным удлинением и сопротивлением раздиру; 4) различные жидкие каучуки (напр., Б.-н. к. типа хайкар 1312), олигоэфиры и др., улучшающие сопротивление резин тепловому старению. Пластификаторы с преимущественным содержанием алифатич. углеводородов (напр., вазелиновое масло) находят ограниченное применение, т. к. вследствие плохой совместимости с Б.-н. к. мигрируют на поверхность резин. Количество пластификаторов не превышает, как правило, 30 мае. ч. С увеличением содержания связанного акрилонитрила совместимость Б.-н. к. с пластификаторами уменьшается.[27, С.158]

Пластификаторы оказывают существенное влияние на свойства смесей и вулкапизатов Б -п. к. В качестве пластификаторов для Б.-н. к. используют: 1) сложные эфиры (дибутилфталат, диоктилфталат, ди-бутилсебацинат и др.), к-рые применяют гл. обр. для повышения морозостойкости и эластичности вулканизатов; 2) природные и синтетич. смолы (канифоль, сосновая, кумароно-инденовые и феноло-формальдегидные смолы), повышающие клейкость смесей (кумароно-инденовые смолы придают вулканизатам также и высокие прочностные свойства); 3) продукты нефтяного происхождения (гл. обр. высокоароматизированные), применение к-рых позволяет получать вулканизаты с высоким относительным удлинением и сопротивлением раздиру; 4) различные жидкие каучуки (напр., Б.-н. к. типа хайкар 1312), олигоэфиры и др., улучшающие сопротивление резин тепловому старению. Пластификаторы с преимущественным содержанием алифатич углеводородов (напр., вазелиновое масло) находят ограниченное применение, т. к. вследствие плохой совместимости с Б.-н. к. мигрируют на поверхность резин. Количество пластификаторов не превышает, как правило, 30 мае. ч. С увеличением содержания связанного акрилонитрила совместимость Б.-н. к. с пластификаторами уменьшается.[32, С.155]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Белозеров Н.В. Технология резины, 1967, 660 с.
8. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
11. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
12. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
13. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
14. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
15. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
16. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
19. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
20. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
21. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
22. Колтунов М.А. Прочностные расчет изделий из полимерных материалов, 1983, 240 с.
23. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
24. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
25. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
26. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
27. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
28. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
29. Бажант В.N. Силивоны, 1950, 710 с.
30. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
31. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
32. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
33. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
34. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
35. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
36. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную