На главную

Статья по теме: Состоянии происходит

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В этом состоянии происходит лишь небольшое смещение двух поляризованных электронных пар, необходимое для присоединения молекулы мономера к растущей цепи (рис. 22, в). Непосредственно после присоединения валентный угол между вновь образовавшимися связями оказывается несколько деформированным. В то же время, при протекании элементарного акта выделяется теплота реакции 10—20 ккал/молъ. Избыток энергии.[13, С.204]

В напряженном состоянии происходит деформация двух видов: объемная и сдвиговая. Деформация растяжения может быть представлена комбинацией объемной деформации (>ц < 0,5) и деформации сдвига. Поэтому достаточно характеризовать полимер двумя типами релаксационных процессов [151]. При этом объемная релаксация, связанная с сжимаемостью и изменением объема полимера, в общем случае протекает в других условиях, нежели деформация сдвига, при которой объем не меняется. В полимерах при таких видах деформации, как одноосное растяжение или сжатие, изгиб и кручение, в области деформаций, где наблюдается линейная вяз-коупругость, изменение объема ничтожно мало и объемная релаксация не наблюдается. Поэтому скорости процессов релаксации при этих видах деформации одни и те же, а соответствующие времена релаксации одинаковы.[5, С.230]

Таким образом, стеклообразное состояние является неким «замороженным», кинетически стабильным, но термодинамически неравновесным состоянием, а не новой фазой, отличной от жидкой. Наблюдаемые температурные кривые различных температурных коэффициентов (рис. II. 7) вполне объяснимы с молекулярно-кине-тической точки зрения [39, с. 27; 40, с. 24; 42, с. 69—73]. Так, в стеклообразном состоянии поглощаемая при повышении температуры теплота идет только на увеличение интенсивности колебаний частиц, и теплоемкость определяется колебательными степенями свободы. В структурно-жидком состоянии, к которому относятся и высокоэластическое, и вязкотекучее деформационные состояния, при нагревании затрачивается добавочная теплота, идущая на увеличение внутренней энергии при переходе от низкотемпературной плотной к высокотемпературной рыхлой структуре. Вследствие этого теплоемкость полимерного стекла меньше теплоемкости полимера в структурно-жидком состоянии. Поэтому на температурной кривой теплоемкости при переходе от жидкости к стеклу наблюдается падение теплоемкости (кривая /, рис. II.7). Тешювде расширение стекла в твердом состоянии происходит только за счет увеличения ангармоничности колебаний. Но в структурно-жидком состоянии объем при нагревании дополнительно уве-[2, С.88]

Полимеризация в твердом состоянии происходит при физическом инициировании процесса вблизи температуры плавления кристаллического мономера. Часто скорость полимеризации приближается к скорости взрыва.[1, С.236]

Тепловое расширение у стекла в твердом состоянии происходит только за счет увеличения интенсивности нелинейных колебаний частиц, так как структура вещества не изменяется. Но в жидком состоянии (выше температуры стеклования) объем вещества дополнительно увеличивается за счет перестройки структуры, характеризующейся все менее и менее плотным расположением частиц. Поэтому коэффициент объемного или линейного расширения у ве-[3, С.41]

При высоких температурах в ненапряженном состоянии происходит термическое разложение полимера с распадом химических связей и образованием низкомолекулярных продуктов. Из предыдущего раздела следует, что энергия активации термической деструкции полимера (диссоциации полимера) UD отождествляется с «нулевой» энергией активации U0 в уравнении долговечности. Обоснования этого были рассмотрены в гл. 2.[9, С.117]

Полимеризация акриламида у-лучами в твердом состоянии происходит в 100 раз медленнее, чем в водном растворе [116, 117,118]. При действии облучения образец мономера акрил-амида после индукционного периода, продолжительность которого увеличивается с понижением температуры, полимеризуется.[12, С.50]

При заданной -скорости деформации при вальцевании в вязко-текучем состоянии происходит преимущественное свободное перемещение макромолекул типа перемешивания цепей, и критические напряжения, приводящие к их разрыву, возникают только в исключительных случаях при местных осложнениях (флуктуащиях) механизма текучести, так что практически деструкции не происхо-[7, С.107]

Высокоэластическое состояние характерно только для полимеров. В высокоэластическом состоянии происходит интенсивное тепловое движение отдельных звеньев, атомных групп и сегментов, однако движение макромолекул как отдельных кинетических единиц невозможно. Полимеры в высокоэластическом состоянии обладают удивительными механическими свойствами. Они способны испытывать громадные обратимые деформации, достигающие иногда нескольких сот процентов. Сущность этого явления заключается в распрямлении свернутых гибких длинных цепей под влиянием приложенной нагрузки и в их возвращении в результате теплового движения к первоначальной форме после снятия нагрузки. Высокотемпературной границей высокоэластического состояния является температура текучести Гт (выше которой полимер находится в вязкотекучем состоянии), низкотемпературной границей — температура стеклования Т/, (ниже которой полимер находится в стеклообразном состоянии).[8, С.74]

Согласно развиваемым этими авторами представлениям, при этой температуре Т2 в самом аморфном состоянии происходит фазовый переход второго рода[4, С.191]

Обычная ромбоэдрическая сера имеет циклические молекулы, содержащие 8 атомов серы. При нагревании серы в расплавленном состоянии происходит превращение никла в линейный полимер;[4, С.33]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
9. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
13. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
14. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
15. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
16. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную