На главную

Статья по теме: Деформирования материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Передача тепла происходит при наличии градиента температур. Для неустановившегося процесса с внутренним теплообразованием (за счет, например, вязкого деформирования материала при смешении) уравнение теплопроводности имеет вид:[4, С.139]

Примем ряд допущений. Как уже отмечалось, диаграмму растяжения жестких полимеров можно с некоторой погрешностью считать линейной (см. рис. 2.6). Ограничимся вязкоупругой областью деформирования материала, полагая, что несущая способность образца исчерпывается, когда напряжение в нем достигает предела текучести или прочности (при хрупком разрыве), т. е. a(t)^.зависимости прочности от скорости деформирования:[6, С.251]

Среди работ, посвященных приложению теории субмолекул к описанию свойств полимеров в блоке, особого внимания заслуживает работа Муни [100], в которой рассматривается процесс релаксации напряжения после деформирования материала с достаточно большой скоростью. Автор [100] предполагает, что при такой деформации происходит афинное изменение линейных размеров всех участков полимерной цепи. Такое предположение основывается на очевид- • ном соображении, что звенья различных цепей, находившиеся рядом в недеформированном состоянии, должны сохранить свое соседство и после мгновенной деформации материала. Несмотря на то, что выражение для времен релаксации, найденное Муни, совпадает с выражениями, полученными в ранее опубликованных работах [84, 85, 88], его подходу следует отдать предпочтение, поскольку рассматривавшееся в этих работах растяжение цепей за концы не может иметь места в реальных системах, так как оно эквивалентно допущению о проскальзывании звеньев соседних цепей при мгновенной деформации.[8, С.22]

Несомненно, что вид поверхности разрушения является наиболее убедительным свидетельством того, что процесс разрушения достиг фазы неоднородного деформирования. Но гораздо чаще поверхность и морфологическая структура ослабленного образца позволяют выяснить, внесла ли фаза однородного деформирования материала вклад в процесс разрушения или нет. Именно по этой причине раздел по фрактографии был введен в главу, посвященную однородному деформированию и разрушению. Рис. 7.8 и 7.9 служат для иллюстрации этого положения. Представленные на этих рисунках поверхности разрушения являются более или менее произвольным результатом большого числа однородно распределенных разрывов и завершившихся процессов проскальзывания цепей и микрофибрилл. Поверхность разрушения образовалась в течение[1, С.263]

В ряде работ расчет кинетических характеристик роста трещин производился по фрактографическим данным. Основываясь на том, что зеркальная зона поверхности разрушения соответствует первой стадии ускоренного, но достаточно медленного роста трещины, эти авторы зафиксировали на границе зеркальной и шероховатой зон скачок скорости роста дефектов. Этот скачок в несколько порядков выводит значение скорости на уровень скорости распространения упругих волн и соответствует, как было показано в гл. II, существенному изменению рельефа поверхности разрушения. Ускорение роста дефекта, соответствующее границе зеркальной зоны, по мнению авторов, приводит к резкому уменьшению степени деформирования материала в вершине дефекта, что сопровождается заострением формы вершины дефекта, увеличением коэффициента перенапряжения, скачкообразным изменением коэффициента а в формуле (V. 10) и возрастанием скорости роста дефекта. Закон самоускоренного роста дефектов приведен в работе [38, с. 1249]:[7, С.293]

Для построения полной зависимости a(t) необходимо оценить зависимость напряжения от времени в период деформирования материала. Последняя получается подстановкой t — ty, в соотношение (1.15):[9, С.16]

Рассмотрим с этих позиций полученные экспериментальные данные. Наиболее благоприятные условия для получения прочных структур создаются, очевидно, в том случае, когда разность значений Рк—6 максимальна. При малой пластической вязкости это обеспечивает возможность деформирования материала, идущего синхронно с его обезвоживанием. Как было показано ранее [9], лучшими свойствами после высушивания обладали образцы, в которых объемная усадка точно следовала за темпом водоотдачи.[10, С.402]

Итак, блоксополимеры с поли-а-метилстирольными концевыми сегментами представляют особый интерес, поскольку анализ их механических характеристик показывает, что повышение температуры стеклования концевых блоков и их жесткости, действительно, придает способность доменам интенсивнее поглощать энергию деформирования материала. Было бы целесообразно установить, до каких пределов повышение указанных параметров может способствовать улучшению механических' характеристик образцов.[11, С.109]

Недостатки испытаний на сжатие: неоднородность деформации (т. е. различная деформация по сечению образца), обусловливающая зависимость результатов испытаний от формы, размеров образца и значения деформации; искажение формы и размеров образца при его нагреве, влияющее па результаты; малая деформация и невозможность достижения стационарного периода деформации из-за кратковременности испытаний; возможность проведения испытаний только при одних (стандартных) условиях; несоответствие режима деформации при испытании режиму деформирования материала на перерабатывающем оборудовании. Показатели испытаний на сжатие могут быть в основном использованы для контроля пластичности (или жесткости) каучуков и полуфабрикатов резинового производства, но недостаточны для оценки кривых точения этих материалов.[12, С.321]

Недостатки испытаний на сжатие: неоднородность деформации (т. е. различная деформация по сечению образца), обусловливающая зависимость результатов испытаний от формы, размеров образца и значения деформации; искажение формы и размеров образца при его нагреве, влияющее на результаты; малая деформация и невозможность достижения стационарного периода деформации из-за кратковременности испытаний; возможность проведения испытаний только при одних (стандартных) условиях; несоответствие режима деформации при испытании режиму деформирования материала на перерабатывающем оборудовании. Показатели испытаний на сжатие могут быть в основном использованы для контроля пластичности (или жесткости) каучуков и полуфабрикатов резинового производства, но недостаточны для оценки кривых течения этих материалов.[14, С.319]

Отношение отрезков Оа/Оа' характеризует влияние скорости деформирования материала на продолжительность его пластично-вязкого состояния.[15, С.21]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
5. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
6. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
10. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
11. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
14. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
15. Соколов А.Д. Литье реактопластов, 1975, 87 с.

На главную