На главную

Статья по теме: Жесткоцепных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

У жесткоцепных полимеров главную роль при растворении играет изменение энтальпии, но и в этом случае энтропийный член термодинамического условия вносит определенный вклад в изменение энергии. И, наоборот, у гибкоцепных полимеров определяющим будет изменение энтропии - ее значительное увеличение вследствие возрастания числа конформаций 162[10, С.162]

Растворы жесткоцепных полимеров характеризуются резким изменением вязкости при достижении концентрации, равной Скр (рис. 3.16).[1, С.152]

У наиболее жесткоцепных полимеров, таких, как ароматические полиамиды или полипептиды в форме а-спиралей, макромолекулы подобны жестким палочкам. Их растворы при низких концентрациях ведут себя как ньютоновские жидкости, а при более высоких концентрациях они проявляют аномалию вязкости. При некоторой критической концентрации в них возможно образование тактоидной структуры *, и они начинают вести себя подобно жидкокристаллическим системам со всеми особенностями, характерными для этих систем **. В определенном диапазоне концентраций могут быть получены кривые течения растворов жесткоцепных полимеров с очень хорошо развитой структурной ветвью, как это показано на рис. 2.45 (по данным Дж. Янга ***).[20, С.224]

Полные кривые жесткоцепных полимеров течения могут быть получены при низких концентрациях в относительно плохих растворителях. Именно для таких систем — на- примере растворов нитроцеллюлозы — В. Филиппов и К. Хесс в тридцатых годах впервые получили почти полные кривые течения. Верхняя область концентраций, до которых реализуются полные кривые течения, определяется условиями желатинизации системы. Если желатинизация отсутствует, полные кривые течения растворов жесткоценных полимеров могут наблюдаться вплоть до весьма высоких концентраций.[20, С.224]

С чисто релаксационных позиций для жесткоцепных полимеров-характерно исчезновение полосы а-перехода на релаксационном спектре. На молекулярном уровне это означает переход от поворотно-изомерного механизма гибкости к ограниченным крутиль» ным колебаниям относительно связей главной цепи.[3, С.283]

В растворах гибкоцепных полимеров самопроизвольной ориентации не происходит. Появление анизотропии наблюдается лишь в растворах жесткоцепных полимеров.[1, С.152]

Примерно каждые десять лет физика и механика полимеров претерпевает коренные изменения, возникают ее новые разделы. Так, биофизика полимеров, физика жесткоцепных полимеров, релаксационная спектрометрия полимеров сформировались или получили наибольшее развитие за последнее десятилетие. В связи с этим на каждом этапе развития физики и механики полимеров возникает необходимость в новом учебном пособии, отражающем современное развитие физики полимеров. Предлагаемое учебное пособие, как надеются' авторы, в какой-то степени поможет в решении такой задачи и будет полезно для студентов вузов, аспирантов вузов и научно-исследовательских институтов и молодых специалистов различных отраслей промышленности, работающих в области получения и применения полимерных материалов.[4, С.8]

В зависимости от особенностей упаковки цепных молекул различают лиотропные и термотропные полимерные жидкие кристаллы [53]. Лиотропное жидкокристаллическое состояние наиболее характерно для жесткоцепных полимеров, способных к весьма специфическому фазовому расслоению. Жидкие кристаллы этого типа обычно представляют собой двух- или трехкомпонентные системы, различающиеся по типу структур на слоистые, стержне-видные и кубические. В термотропном жидкокристаллическом состоянии обычно находятся линейные блок-сополимеры и гребнеобразные полимеры. Их термодинамически устойчивое мезоморфное анизотропное состояние занимает промежуточное положение по отношению к твердой и жидкой фазам.[4, С.30]

Стрелки (слева) обозначают ориентацию жестких макромолекул внутри домена. Результирующая структура (справа) характерна для сверхориентированных гибкоцепных полимеров или для «суперволокон» из жесткоцепных полимеров.[3, С.218]

Так что релаксационная спектрометрия как общий метод, по существу, отказывается «работать» в жесткоцепных полимерах. Разумеется, это не означает, что применение методов, составляющих релаксационную спектрометрию, для исследования жесткоцепных полимеров лишено смысла. Просто каждый метод теперь дает специфическую (для этого метода) информацию, которую отнюдь не всегда уместно связывать с подвижностью. ТВЭ исчезает, и даже о ТВА надо говорить с большой осторожностью.[11, С.314]

При этом вследствие реакции передачи цепи может происходить также образование привитых сополимеров. Механохимиче-ский метод используют для получения блок- и привитых сополимеров на основе различных каучуков с целью улучшения их физико-механических свойств (жесткости, прочности и т. д.), а также для повышения ударной прочности ряда жесткоцепных полимеров (эфиры целлюлозы и др.) за счет их модификации эластомерами.[5, С.66]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
11. Бартенев Г.М. Физика полимеров, 1990, 433 с.
12. Серков А.Т. Вискозные волокна, 1980, 295 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
15. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
16. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
17. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
18. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Виноградов Г.В. Реология полимеров, 1977, 440 с.
21. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
22. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
23. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
24. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
25. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
26. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
27. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
28. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
29. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
30. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
31. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
32. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
33. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
34. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
35. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
36. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную