На главную

Статья по теме: Каталитической полимеризации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Существенное преимущество способа каталитической полимеризации в растворе состоит в возможности широкого регулирования строения образующихся каучуков как с тцчки зрения микроструктуры полимерной цепи, так и с точки зрения других молекулярных параметров.[1, С.54]

В последнее время получены альтернантные БНК путем каталитической полимеризации в растворах. Эти полимеры, независимо от состава полимеризуемой смеси мономеров, имеют один и тот же молекулярный состав (бутадиен : акрилонитрол = 1 : 1) с правильным чередованием звеньев мономеров. При высокой маслобен-зостойкости такие БНК характеризуются более низкой температурой стеклования, а резины на их основе — более высокой прочностью по сравнению с резинами из аналогичных эмульсионных БНК [34].[1, С.365]

Каталитическая полимеризация. Из известных методов каталитической полимеризации для получения жидких каучуков с концевыми функциональными группами пригодна практически только полимеризация или сополимеризация диолефиновых и олефиновых углеводородов под влиянием щелочных металлов или их металл-органических соединений.[1, С.413]

Указанные закономерности верны для полимеров с любыми функциональными группами. Это понятно для каталитической полимеризации, когда функциональные группы вводятся уже после сформирования молекулярных цепей. Однако и в области радикальной полимеризации, инициаторы одного класса, но с различными функциональными группами, приводят к одинаковым молекулярным параметрам полимера. Ниже представлены результаты фракционирования полибутадиенов, полученных на инициаторах перекисного типа:[1, С.436]

Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкого-лятов калия, в качестве добавок сближающих константы сопо-лимеризации. При исследовании кинетики полимеризации 1,3-пен-тадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литий-органическими соединениями, то цыс-форма ведет себя иначе во всех растворителях: эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17].[1, С.418]

Микроструктура полибутадиенов каталитической полимеризации, полученных с использованием различных катализаторов, существенным образом зависит как от самого катализатора, так и от растворителя и других факторов (см. стр. 417).[1, С.436]

Взаимодействие живого полимера с примесями, содержащими активный атом водорода, приводит, с одной стороны, к образованию моно- и нефункциональных полимерных цепей, с другой стороны, к расширению молекулярно-массового распределения, так как часть цепей теряет способность к росту. Современные методы очистки мономеров и растворителей, используемых в каталитической полимеризации, позволяют достаточно успешно избежать этой причины нарушения функциональности [2], особенно если процесс полимеризации осуществляется в непрерывном варианте.[1, С.416]

Поскольку макромолекулы жидких каучуков представляют собой линейные цепи, то каучуки являются жидкостями ньютоновского типа, их вязкость, в большинстве случаев, линейно зависит от молекулярной массы (в логарифмических координатах), т. е. для них справедливо соотношение t] — /(Ma. Меньше исследовано количественное влияние ММР. Во всяком случае, сужение ММР вызывает уменьшение вязкости при прочих равных условиях. Этим обстоятельством, по-видимому, объясняются более низкие вязкости (в 2 — 3 раза) полимеров каталитической полимеризации по сравнению с аналогичными полимерами радикальной полимеризации (см. табл. 5 и табл. 7).[1, С.438]

МЕХАНИЗМ КАТАЛИТИЧЕСКОЙ ПОЛИМЕРИЗАЦИИ АЦЕТИЛЕНА В ВОДНЫХ РАСТВОРАХ CuCl • MeCI[1, С.713]

Рассмотрим пример каталитической полимеризации диенов на л-кротильных комплексах галогенидов никеля. Такие комплексы существуют в виде димеров и мономеров, причем последние обладают каталитической активностью:[2, С.54]

Обрыв цепи в обоих случаях каталитической полимеризации происходит при потере активности, т. е. при потере концевыми группами способности присоединять циклические молекулы. Это может быть следствием отщепления концевых групп — путем омыления сульфатных групп водой (в случае катионной полимеризации) или путем термической деструкции тетраметиламмониевых групп (в случае анионной полимеризации).[7, С.184]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
5. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
6. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
7. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
8. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Фихтенгольц В.С. Атлас ультрафиолетовых спектров поглощения веществ, применяющихся в производстве синтетических каучуков, 1969, 189 с.
11. Исакова Н.А. Контроль производства синтетических каучуков, 1980, 240 с.
12. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
13. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
14. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
15. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
16. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
18. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
19. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
20. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную