На главную

Статья по теме: Температура окружающей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Та — температура окружающей среды, h — коэффициент теплоотдачи на поверхности образца; постоянные р, ср и Я, — плотность, теплоемкость и коэффициент теплопроводности материала соответственно; Я,/рср — температуропроводность. Предполагается, что для обычных полимерных материалов температуропроводность принимает значения от 10~7 м2/с (ПЭТФ) до -2,1 -Ю-7 м2/с (ПЭВП, ПОМ).[1, С.292]

Определение жизнеспособности (времени келатинизации) при 20±1°С. Оставшуюся часть при-отовленного клеевого раствора при периодическом перемешивании выдерживают при 20±Г°С до начала желатинизации. 1сли температура окружающей среды выше или ниже указан-юй, то испытание надо проводить в водяном термостате при !0±1 °С, при этом уровень /клеевого раствора в стаканчике дол-кен быт^ь на 40—20 мм ниже уровня воды в термостате. За фемя желатинизации принимают время (в ч) от момента до->авления хлорида аммония до момента потери текучести рас-лвора.[10, С.277]

Механизм теплового пробоя сводится к тому, что при протекании тока повышается температура диэлектрика, проводимость его возрастает, что приводит к увеличению количества выделяемой теплоты. В результате происходит разогрев диэлектрика, который может завершаться его сплавлением и прожиганием. Нагревание диэлектрика протекает тем быстрее, чем выше температура окружающей среды. Тепловой пробой наступает как следствие протекания сравнительно медленных процессов (теплоотдача, нагревание).[4, С.205]

Для подтверждения этой гипотезы на рис. 105 отложена зависимость периода рассеяния d (первого порядка) от безразмерной температурной характеристики Тпл/&Т для нефракционированных образцов линейного полиэтилена. Горизонтальная ось на этом рисунке — нелинейная шкала температур, сильно растянутая в области высоких температур кристаллизации и сжатая в области больших переохлаждений. Данные для высоких температур кристаллизации согласуются с ожидаемой линейной зависимостью, которая экстраполируется к очень малым периодам d при больших переохлаждениях. Однако при кристаллизации ниже ~ 115° С наблюдается отклонение от линейности, причем в достаточно широком интервале температур изменение величины d относительно мало. Не исключена возможность, что в этом интервале температура окружающей среды и температура, при которой в основном проходила кристаллизация, не идентичны. Последняя температура, конечно, выше. Поэтому вполне возможно, что если бы удалось осуществить изотермическую кристаллизацию при более низких температурах, то температурная зависимость d представилась бы прямой линией во всей области кристаллизации.[15, С.285]

Применение ЭВМ для управления процессом экструзии на первый план выдвигает вопросы автоматического определения важнейших свойств получаемого эксгрудата и определяющих их технологических параметров. Поскольку процесс экструзионного формования ПВХ может быть разделен на три стадии - пластикация композиций, формование экструдата и его охлаждение, то контроль процесса должен осуществляться на всех трех стадиях и рассматриваться как система со многими переменными, к которым можно отнести производительность, температуру, давление и вязкость перерабатываемого материала. Указанные параметры зависят от таких регулируемых величин, как количество тепла, подводимого к цилиндру, силы трения, скорости вращения шнека. На регулируемые переменные влияют так называемые "нарушаемые" переменные: колебание мощности, температура окружающей среды, изменение свойств перерабатываемого материала. Управление скоростью шнека осуществляется путем регулирования частоты вращения двигателя, а контроль его температуры особенно необходим в экструдерах с большим диаметром червяка.[11, С.251]

При выяснении влияния скорости деформации на механизм разрушения могут возникнуть определенные трудности. Так, при малой скорости деформации в определенном температурном интервале возникает шейка. Возможно, что при высоких скоростях тепло не может отводиться достаточно быстро. Поэтому в процессе деформации упрочнения не происходит, и образец разрушается но пластическому механизму. Другими словами, здесь происходит переход от изотермического к адиабатическому режиму растяжения. Этот эффект обусловливает значительное снижение энергии, затрачиваемой на разрушение образца, и может иметь место при определении ударной прочности, *приводя к устранению возможности хрупкого разрыва. Исходя из этого, было высказано предположение, что существуют две критические скорости, при которых энергия разрушения резко падает с ростом скорости деформации. Первая из них отвечает переходу от изотермического процесса деформации к адиабатическому (изотермический — адиа->батический переход) и вторая, более высокая, — переходу от хрупкого механизма разрыва к пластическому (переход хруп-;кость — пластичность). Можно думать, что температура окружающей среды * оказывает незначительное влияние на условия, при которых наблюдается изотермический — адиабатический переход, и большое влияние на переход хрупкость — пластичность.[14, С.310]

Тц — температура окружающей среды.[7, С.208]

К основным условиям эксплуатации, определяющим работоспособность пластмассовых изделий, относятся температура окружающей среды, ее влажность и наличие внешнего химически агрессивного воздействия.[12, С.103]

Температура окружающей среды t, °С 20 40 —[6, С.137]

5.1. Температура окружающей среды[12, С.103]

5.1. Температура окружающей среды.................103[12, С.239]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
6. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
7. Смирнов О.В. Поликарбонаты, 1975, 288 с.
8. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
9. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
10. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
11. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
12. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
13. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
14. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
15. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.

На главную