На главную

Статья по теме: Агрегативная устойчивость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Агрегативная устойчивость латексов БНК ниже по сравнению с латексами бутадиен-стирольного каучука и существенно зависит от температуры, что вызывает необходимость проведения отгонки незаполимеризовавшихся мономеров при более низких температурах и более сильном разбавлении.[1, С.360]

Агрегативная устойчивость частиц ПВХ в общем случае должна определяться их концентрацией, размером, а также соотношением энергий притяжения, отталкивания и столкновения. Относительное движение глобул ПВХ в капле эмульсии может быть обусловлено как броуновской диффузией, так и инерционным движением глобул из-за разности плотностей ПВХ и ВХ при действии на каплю турбулентных пульсаций. Перемещение глобул внутри капли может влиять не только на частоту и энергию столкновений, но также на число частиц N0.[3, С.47]

Известно, что чем ниже агрегативная устойчивость дисперсны частиц, тем менее плотно они упакованы при агрегации [23, 36]. При ставленные выше расчеты подтверждают этот факт: чем выше р*3 , вьй агрегативная устойчивость частицы ПВХ, тем больше К, причем д-1 ПВХ зависимость К от р* близка к линейной (рис. 1.18):[3, С.46]

Лиофильные золи — термодинамически устойчивые системы. Их агрегативная устойчивость не связана с наличием стабилизатора. Поверхностный слой М. в таких системах образован лиофильными группами молекул вещества самой дисперсной фазы. Коллоидные частицы лиофильных золей интенсивно взаимодействуют с окружающей жидкостью и межфазная свободная энергия чрезвычайно мала. Лиофильные золи образуются в результате самопроизвольного диспергирования твердых тел или жидкостей под влиянием теплового движения и не разрушаются со временем при сохранении условий их возникновения. Таковы, напр., системы типа критич. эмульсий, возникающих вблизи критич. темп-ры смешения двух жидкостей, водные дисперсии бентонитовых глин, коллоидные дисперсии мыл и синтетич. моющих веществ, а также нек-рых органич. пигментов и красителей.[9, С.128]

Л и о ф и л ь н ы е золи — термодинамически устойчивые системы. Их агрегативная устойчивость не связана с наличием стабилизатора. Поверхностный слой М. в таких системах образован лиофильными группами молекул вещества самой дисперсной фазы. Коллоидные частицы лиофильных золей интенсивно взаимодействуют с окружающей жидкостью и межфазная свободная энергия чрезвычайно мала. Лиофильные золи образуются в результате самопроизвольного диспергирования твердых тел или жидкостей под влиянием теплового движения и не разрушаются со временем при сохранении условий их возникновения. Таковы, напр., системы типа критич. эмульсий, возникающих вблизи критич. темп-ры смешения двух жидкостей, водные дисперсии бентонитовых глин, коллоидные дисперсии мыл и синтетич. моющих веществ, а также нек-рых органич. пигментов и красителей.[6, С.130]

Из уравнений (1.79) и (1.80) видно, что с увеличением размера частиц агрегативная устойчивость уменьшается, так как Fo~rf и FT~rf2. В связи с этим очень часто для стабилизации частиц с размерами 1-3 мкм используют высокомолекулярные стабилизаторы эмульсии. В этом случает возможно существенное увеличение силового барьера отталкивания.[3, С.61]

Латексы представляют собой коллоидные дисперсии полимеров (каучуков) в водной среде, достаточная агрегативная устойчивость которых обеспечивается присутствием стабилизаторов — поверхностно-активных веществ, чаще всего анио неактивных (соли высших жирных кислот, сульфокислот}. Нолее половины товарных латексов используют в резиновой промышленности для получения изделий, в которых каучук латекса является основным материалом. Остальные литексы находят широкое применение для пропитки корда, в производстве нетканых материалов, бумаги, строительных материалов и т. д.[2, С.300]

Рассматривая теоретические принципы нарушения агрегативной устойчивости синтетических латексов электролитами, надо иметь в виду, что агрегативная устойчивость этих коллоидных систем обусловливается наличием адсорбционного слоя, который имеет достаточно высокий заряд диффузного ионного слоя (^-потенциал для большинства латексов равен 100 -=-60 мВ) [32], обеспечивающий стабилизацию таких систем за счет электростатических сил отталкивания, и достаточно высокую степень гидратации, наряду с вязкоупругими свойствами и достаточной механической прочностью. С другой стороны, стабилизация синтетических латексов осуществляется в большинстве случаев ионными ПАВ, у которых при введении электролитов в систему резко меняется растворимость и происходит их высаливание из раствора.[1, С.255]

Наиболее эффективная коагуляция достигается при добавлении в устойчивую дисперсную систему электролитов, содержащих ионы с противоположным зарядом, в результате чего также ликвидируется агрегативная устойчивость частиц. В качестве коагулянтов в процессах электролитной коагуляции применяют соли алюминия, железа и их смеси [98]. Для коагуляции сточных вод производств ПВХ наибольшее распространение получил сульфат алюминия Al2(S04h'18H20, способный сам образовывать коагуляционные структуры. Как соль сильной кислоты и слабого основания он в воде подвергается гидролизу, образуя гидроксид:[3, С.159]

Параметром, характеризующим насыщенность поверхности фаз СЭ, может служить межфазное натяжение о. Чем сильнее высс молекулярный СЭ снижает межфазное натяжение в системе ВХ - во тем больше его звеньев адсорбировано на поверхности и тем бо. высокой должна быть агрегативная устойчивость глобул ПВХ в кап Опыты, проведенные с СМИ (о > 25-10~3 Дж/м2), подтверждают :; факт. При использовании СМИ образуются непористые частицы, при р = 0,5 5уд = 0,44 м2/г. В [198] также отмечено, что непорис стекловидные частицы образуются при о > 20-10~3 Дж/м2. Анало ный результат получен при использовании в качестве СЭ ПВС с низ; содержанием ацетатных групп, практически не снижающего меж; ное натяжение в системе [110].[3, С.50]

Если в исходной эмульсии требуемая толщина адсорбционного слоя не достигается, то на стадии липких полимерно-мономерных частиц идет их агрегация, ведущая к сокращению межфазной поверхности и увеличению толщины адсорбционного слоя до таких значений, при к-рых возможна агрегативная устойчивость. Наиболее опасна область конверсии до 30—50%, в к-рой дисперсная фаза наиболее липкая. Обладая поверхностной активностью, т. е. снижая в результате адсорбции межфазное натяжение, стабилизаторы облегчают диспергирование мономера при перемешивании.[10, С.285]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
4. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
5. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
6. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
7. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
8. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
9. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
10. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
11. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную