На главную

Статья по теме: Активность катализатора

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Активность катализатора («зо-С4Н9)зА1 + TiCU (1:1) не зависит от концентрации диизобутилалюминийхлорида. В то же время скорость полимеризации изопрена заметно возрастает, если диизо-бутилалюминийхлорид вводить при более низком отношении (изо-С4Н9)зА1/Т1С14 (рис. 9). Этот эффект, очевидно, вызван образованием дополнительного количества активных центров полимеризации в результате вытеснения изобутилалюминийдихлорида из комплекса с p-TiC!3 за счет смещения вправо равновесия:[1, С.216]

Активность катализатора при Al/Ti •< 1 также заметно повышается в результате удаления растворимых продуктов (рис. 10), в состав которых входит изобутилалюминийдихлорид. Ингибирую-щее влияние изобутилалюминийдихлорида на полимеризацию изопрена подтверждено при введении его в каталитическую систему (рис. 11).[1, С.216]

Активность катализатора определяется соотношением алкилов алюминия и четыреххлористого титана. Изменяя это соотношение, можно регулировать процесс полимеризации и получать полимеры с заданными свойствами. При увеличении содержания четыреххлористого титана в сфере реакции возрастает скорость полимеризации этилена, значительно повышается выход полиэтилена, но уменьшается его молекулярный вес. Активность катализатора можно значительно повысить введением, третьего компонента. В промышленности обычно применяют диэтилалюминийхлорид, в присутствии которого легче регулировать процесс полимеризации и получать полиэтилен с необходимым молекулярным весом. Кроме того, диэтилалюминийхлорид является менее пожаро- и взрывоопасным, чем три-этилалюминий.[3, С.7]

Активность катализатора зависит от пористости носителя, концентрации и температуры активации. Наиболее активными являются катализаторы, нанесенные на пористые алюмосиликаты с большой[3, С.9]

Влияние на полимеризационную активность катализатора реактивации с помощью ГХЦ: /—без реактивации; 2—ГХЦ введен перед началом сополимеризации; 3—ГХЦ введен через 2 ч после начала сополимеризации.[1, С.301]

В процессе дегидрирования на катализаторе откладывается кокс, в результате активность катализатора падает. Для восстановления активности отработанный катализатор из реактора подается в регенератор 6. Регенерация катализатора проводится воздухом при 650 °С и давлении 0,117 МПа. Температура 'в зоне горения регулируется подачей топливного газа. В нижней части регенератора имеется восстановительный стакан, куда подается природный газ для восстановления в катализаторе избыточного шестивалентного хрома до трехвалентного. Для десорбции продуктов восстановления в нижнюю часть стакана вводится азот. Г.азы десорбции поступают в зону горения.[2, С.72]

Создание новых катализаторов оказалось возможным в результате изучения закономерностей формирования и разрушения фосфатных катализаторов [37—40]. После осаждения компонентов и формования в гранулы эти катализаторы представляют собой рентгеноаморфную массу. В процессе активационной разработки происходит резкое изменение их удельной поверхности, укрупнение пор. Фазовый состав при этом практически не изменяется, и катализаторы представляют собой монофазную систему типа твердого раствора замещения. Механическая прочность даже при мягких режимах активационной разработки снижается на порядок. Использование специальных приемов позволило устранить факторы, снижающие прочность гранул, а введение добавок и новый способ приготовления обеспечили высокую активность катализатора.[1, С.660]

На скорость полимеризации, выход и свойства полиэтилена оказывают влияние активность катализатора, температура и давление процесса.[3, С.9]

Изучалось влияние температуры и скорости подачи спио-та на каталитическую активность катализатора, а также продолжительность работы контакта. Результаты экспериментов представлены 'в таблице.[4, С.61]

Наконец, отравление катализаторов является фактором, в основном определяющим активность катализатора в ходе процесса. Как известно, к отравлению относится дезактивация катализаторов в результате взаимодействия их с примесями (ядами) с образованием каталитически неактивных в данной реакции химических поверхностных или объемных соединений.[5, С.106]

Влияние природы металла и лигандов в я-аллильных комплексах на стереоселективность и активность катализатора при полимеризации изопрена[1, С.104]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
4. Труды Л.Х. Мономеры. Химия и технология СК, 1964, 268 с.
5. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
6. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
7. Амброж И.N. Полипропилен, 1967, 317 с.
8. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
9. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
10. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
11. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
12. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
13. Блаут Е.N. Мономеры, 1951, 241 с.
14. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
15. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
16. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
17. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
18. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
19. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
20. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
21. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
25. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную