На главную

Статья по теме: Коррозионного разрушения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На скорость коррозионного разрушения оказывает сильное влияние реакционная способность полимера и химическая активность среды. Так, на примере резины из каучука СКС-30-1 показано1, что с увеличением константы диссоциации кислот (с близкими молекулярными массами, чтобы исключить влияние диффузии) долговечность полимера уменьшается (табл. 16).[3, С.296]

Исследования коррозионного разрушения резин показывают, что чем большую роль играет химическое взаимодействие при разрушении, тем при меньших концентрациях агрессивного агента оно должно проявляться. Проследить за этим можно, изучая влияние концентрации агрессивного агента на относительную[3, С.340]

Результаты исследования показывают, что контакт пенопласта, изготовленного с бикарбонатом натрия и порофором ЧХЗ-57, с металлами в различных водных средах не оказывает значительного влияния на скорость коррозионного разрушения последних.[1, С.65]

Обычно металлизированные пластмассы корродируют по механизму, характерному для анодной защиты: растворяется подслой меди, и вследствие этого на поверхности появляются зеленые или темно-коричневые пятна продуктов коррозии. При более длительном процессе коррозии подтравливаются химически осажденные слои металла, особенно никеля, уменьшается адгезия, появляются точечные вздутия. На такой вид коррозионного разрушения оказывает влияние природа металлизированной пластмассы. Например, полипропиленовые детали более устойчивы, чем детали из АБС-пластика. При еще более продолжительном[2, С.23]

Разрушение материалов под действием механических сил происходит с разрывом вандерваальсовых или химических связей и поэтому в общем виде может рассматриваться как результат преодоления взаимодействий между частицами тела. Этот процесс может происходить не только под действием механических напряжений, но и под влиянием других факторов (тепло, растворители, химические агенты), что приводит к общности закономерностей статической усталости и коррозионного разрушения. При этом сходство процессов коррозионного разрушения и статической усталости отнюдь не ограничивается только резинами, а присуще всем материалам и с этой точки зрения представляет более общий интерес.[3, С.8]

Химически активные среды влияют на прочностные свойства материалов еще сильнее, чем физически активные. Эффект бывает настолько значительным, что разрушение напряженных материалов при одновременном воздействии химически активной среды часто рассматривалось как явление, не связанное с прочностными свойствами тел,—как качественно иной процесс. Так, например, при действии озона на растянутую резину скорость процесса разрушения мэжет при определенной концентрации О:! увеличиваться в сотни тысяч раз пэ сравнению со скоростью разрушения в отсутствие озона. Не раз высказывавшаяся одним из авторов и прэвэдчмдл в этой книге идея о сходстве процессов коррозионного разрушения и статической усталости в последнее время начинает получать все более широкое распространение. Так, например, высказывается мнение, что существует аналогия между озонным растрескиванием резин и растрескиванием пластиков под влиянием механических напряжений33. В одной из японских работ31 процесс развития озонных трещин в растянутой резине описывается с пэмэщью такого же метода и аналогично тому, как это делается при рассмотрении развития трещин в процессе хрупкого разрыва твердых тел35.[3, С.250]

Одной из характерных черт коррозионного разрушения, связанного с поверхностным действием физически и химически активных[3, С.297]

При оценке величин энергии активации коррозионного разрушения напряженных резин следует рассмотреть вопрос об активации напряжением процесса воздействия агрессивного агента и о роли диффузии агрессивной среды при растрескивании. Высказанные в ряде работ соображения о том, что при наличии напряжения активируется процесс взаимодействия агрессивной среды с полимером, нуждаются в разъяснении. При наложении напряжения скорость процесса увеличивается вследствие перехода из области диффузионной в область химической кинетики. Следовательно, роль напряжения сводится к устранению диффузионных задержек, а не к активированию самой реакции. Формальное рассмотрение понятия активирования как снижения энергии активации при воздействии агрессивной среды может привести к недоразумениям. Так, при действии соляной кислоты на резину из СКС-30-1 энергия активации диффузии меньше, чем энергия активации химического взаимодействия. Поэтому при наложении напряжения величина U не только не уменьшается, но возрастает. При действии же озона на резины, содержащие двойные связи, энергия активации химической реакции 23*[3, С.355]

Исходя из аддитивности скоростей статической усталости и коррозионного разрушения, долговечность можно выразить уравнением[3, С.339]

В гл. XI рассмотрены закономерности, общие для статической усталости и коррозионного разрушения, в гл. XII и XIII—особенности коррозионного разрушения высокоэластических материалов.[3, С.268]

В указанном интервале напряжений происходит упрочнение резины, относительная роль коррозионного разрушения по сравнению со статической усталостью возрастает и величина Рс сдвигается в сторону меньших концентраций.[3, С.345]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Адрианов Р.А. Пенопласты на основе фенолформальдегидных полимеров, 1987, 81 с.
2. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
3. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.

На главную