На главную

Статья по теме: Полученных различными

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В ПК-спектрах полиэтиленов, полученных различными способами, наблюдаются различия, которые являются результатом отклонения структуры полиэтилена от линейной цепи —СНг— (рис. 12.4). На этом основано аналитическое приложение ИК-спектроскопии к определению степени ненасыщенности, концентрации метальных групп и боковых ответвлений в полиэтиленах[3, С.193]

Процессы деструкции полимеров, полученных различными методами и в том числе методом поликонденсации, будут подробно рассмотрены на с. 264 и ел. Здесь необходимо указать лишь те реакции, которые непосредственно сопутствуют поликонденсации и вскрывают всю сложность механизма этого процесса.[4, С.149]

Процессы деструкции полимеров, полученных различными методами и в том числе методом поликонденсации, будут подробно рассмотрены на с. 264 и ел. Здесь необходимо указать лишь те реакции, которые непосредственно сопутствуют поликонденсации и вскрывают всю сложность механизма этого процесса.[4, С.152]

Кроме того, в полиуретанах удлинение успешно осуществляется не только на стадии получения преполимеров, но и на стадии отверждения конечного продукта. Несоответствие абсолютных значений молекулярной массы, полученных различными авторами, обусловлено особенностями строения полимеров, а именно наличием устойчивых ассоциатов высокой энергии когезии. Использование таких методов, как светорассеяние, осмометрия, ультрацентрифугирование, химический анализ концевых групп оправдано только для молекулярной массы эластомеров не выше 2,5-104. Так, молекулярная масса линейных полиуретанов, определенная виско-зиметрически, составила 3-Ю4 [42]. Для полиуретанов молекулярной массы 5-Ю4 и более можно считать вполне надежными данные спектров ЯМ.Р [43].[1, С.537]

Таблица 4 - Молекулярные параметры полимердиолов, полученных различными[1, С.435]

Предельное число вязкости [ц] зависит от степени разветвления ПВА. При одинаковой MM [t\] разветвленного ПВА ниже, чем линейного. Ниже приведены значения К. и а для промышленных образцов ПВА, полученных различными методами и отличающихся по степени разветвленности ([t\] измеряли в растворе ацетона при 20 °С; ММ ПВА определена методом седиментации в ультрацентрифуге):[10, С.65]

Макромолекулы поливинилхлорида имеют разветвленное строение. Установлено, что одно разветвление приходится на 50—100 мономерных звеньев. Растворы полимеров одинакового среднего молекулярного веса, полученных различными методами, имеют примерно одинаковую удельную вязкость.[2, С.266]

Таким образом, рассмотренные выше результаты показывают, что методы рентгеноструктурного анализа активно применяются для определения размера зерен и микродеформаций в нанострук-турных материалах. Однако в ряде случаев имеет место разброс в абсолютных значениях этих параметров, полученных различными методами. В связи с этим важным является совершенствование методик для получения более достоверной информации о размерах зерен и микродеформаций в наноструктурных материалах. Весьма полезным здесь представляется применение компьютерного моделирования для правильного анализа полученных результатов [131-133].[5, С.73]

Развитие методов синтеза таких сополимеров значительно расширяет возможности получения полимерных материалов с разнообразными свойствами, так как становится возможным сочетать в одной молекулярной цепи участки природных и синтетических, гибких и жестких, гидрофильных и гидрофобных полимеров, полученных различными методами. Блок-сополимеры и привитые сополимеры уже довольно широко используются в промышленности пластических масс, синтетических каучуков и синтетических волокон.[4, С.201]

Другие варианты этого метода заключаются в сравнении среднечислен-ного и средневесового молекулярных весов. Эти методы требуют очень точного определения функции распределения полимерных молекул. Неточное определение функции распределения, по-видимому, является главной причиной противоречивых результатов, полученных различными авторами. О возможностях этих методов можно судить по работе Брес-лера и Френкеля [51], которые исследовали молекулярно-весовое распределение образцов полистирола, полученных при нормальном и высоком давлении (до 4000 атм) и при различных температурах (от 30 до 80° С). Они установили, что во всех случаях соединение полимерных радикалов является основным фактором, определяющим длину полимерных цепей.,[15, С.99]

Положение минимума на релаксационной кривой, соответствующее температуре стеклования, зависит от частоты воздействия: чем ниже частота, тем ниже температура стеклования, определенная этим методом. Поэтому измерение температуры стеклования методом механических потерь (частота воздействия 103) дает значение на 20-30 градусов ниже. Путем несложных вычислений можно получить формулу для пересчета температур стеклования, полученных различными методами. Если частота воздействия одного метода a>i, а другого (02, то в минимумах релаксационных кривых действуют соотношения:[8, С.386]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
6. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
7. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
10. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
11. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
12. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
13. Шатенштейн А.И. Практическое руководство по определению молекулярных весов и молекулярно-весового распределения полимеров, 1964, 188 с.
14. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
15. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
16. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
17. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
23. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
24. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную