Благодаря высокой температуре стеклования блоков поли-ос-метилстирола термоэластопласты на основе а-метилстирола выгодно отличаются от термоэластопластов на основе стирола более широким температурным интервалом, в котором сохраняются прочность и эластические свойства материала, при этом с увеличением содержания а-метилстирола температуростойкость полимера повышается. По-видимому, это объясняется уменьшением влияния эластичной фазы на текучесть термоэластопласта в связи с понижением ее доли в полимере, а также повышением молекулярной массы поли-а- метил стиральных блоков.[1, С.289]
В принципе, морозостойкость зависит от тех же параметров, что и эластичность, однако, так как морозостойкость определяется обычно при температурах, близких к температуре стеклования, зависимость коэффициента морозостойкости от молекулярных параметров выражена слабее, чем при измерениях эластичности.[1, С.91]
Напряжения, возникающие при смещении цепи относительно матрицы твердого тела, могут быть также описаны с учетом понятия о коэффициенте трения мономеров ?0 [25]. Смысл такого допущения детально обсуждается Ферри [25], который также приводит перечень численных значений коэффициентов трения мономеров для многих полимеров. Естественно, коэффициенты в сильной степени зависят от температуры. Но даже если проводить сравнение при соответствующей • температуре, например при температуре стеклования каждого полимера, коэффициенты трения мономеров изменяются в зависимости от физической и химической структуры цепи на 10 порядков величины. В верхней части интервала значений получим при соответствующих каждому полимеру температурах стеклования 1740 Нс/м для ПММА, 19,5 Нс/м для ПВА и 11,2 Нс/м для ПВХ [25]. Это означает, что сегмент ПВХ, вытянутый при 80°С из матрицы ПВХ со скоростью 0,005 нм/с, преодолевает силу сдвига 0,056 нН на мономерное звено. При более низких температурах коэффициент молекулярного трения, по существу, растет пропорционально интенсивности спектра времен релаксации Я (т), причем увеличение составляет примерно от одного[3, С.145]
Исследования влияния гидростатического давления на спад свободных радикалов проводятся с целью выяснения их подвижности и расстояния, на которое происходит миграция радикалов. Серия экспериментов была выполнена в Институте полимеров словацкой Академии наук в Братиславе. Было показано [44—46], что константы скорости спада числа свободных радикалов уменьшаются по экспоненциальному закону с ростом давления. При низких температурах константы скорости лишь слабо изменяются в зависимости от давления. Эффект замедления спада числа радикалов усиливается при высоких температурах. Чем ближе температура, при которой определяется спад числа радикалов, к температуре стеклования Тс, тем более заметно стабилизирующее действие давления. Конечно, влияние давления прекращается, когда последнее становится столь велико, что препятствует исследуемому молекулярному движению; для а-релаксации в ПЭ и ПВА в интервале температур 80—110°С насыщение происходит при давлении 800 МПа, а в ПА-6 — при давлении 1500 МПа [44].[3, С.223]
При рассмотрении свойств эластомеров на основе ароматического (ТДИ) и алифатического (ГДИ) диизоцианатов было показано [36], что с ростом содержания уретановых групп температура стеклования возрастает линейно. Степень же поперечного сшивания в широком диапазоне не оказывает влияния на температуру стеклования [37]. Различия в поведении систем объясняются несомненным влиянием фениленовых групп, соответственно возрастанием жесткости цепи и снижением ее гибкости. В кристаллизующихся уретановых эластомерах введение ароматических групп снижает самопроизвольную кристаллизацию за счет взаимодействия с близлежащими элементами регулярной структуры. Введение жестких звеньев сказывается на температуре стеклования эластомеров, которая для испытанного ряда диизоцианатов: гексамети-лен-, толуилен-, фенилен-1,4- и нафтилен- возрастает и становится равной —67,5; —52,5; —50,5 и —17 °С [38].[1, С.536]
При температуре стеклования Tg в аморфных полимерах наблюдается переход второго рода, и их состояние изменяется от хрупкого к высокоэластическому. Хотя значение Те обычно задается одним числом, на самом деле это интервал температур шириной 5—10 °С. С увеличением скорости нагрева и внешнего гидростатического давления Т8 повышается. Значение Tg (см. табл. 2.1) зависит от химической структуры полимера, пластицирующих добавок, а в случае сополимеров — от типа мономеров. Ниже температуры стеклования модуль сдвига имеет порядок 103 МПа и не зависит от времени. Вблизи Tg, и особенно в области от Tg до Tg + 30 °С, модуль резко падает до значения порядка 1 МПа, которое харак-[5, С.257]
Чем ближе температура к температуре стеклования, т. е. чем больше эластомер по свойствам напоминает пластмассу, тем больше роль энергетической составляющей fu, больше ее доля в общей величине силы (fu/f)- Это видно на примере пространственно-сшитого полигексилметакрилата, имеющего Тс^—3°С:[9, С.110]
Полимерные стекла, как и кристаллы, имеют фиксированную структуру, которая при любых температурах (ниже Тс) будет тождественна структуре жидкостей, находящейся при температуре стеклования (если при нагревании изменение температуры происходит с той же скоростью, что и скорость охлаждения, так как Тс зависит от последней). На кривой усадки силиконового каучука (рис. 10.12) видны две переходные области, в которых резко меняется или длина образца, или характер зависимости длины образца от температуры. Первая область (начиная с ТУ, которая соответствует температуре максимальной скорости кристаллизации), в которой длина изменяется почти скачком, связана с частичной кристаллизацией эластомера, а вторая (вблизи Тс) отвечает его структурному стеклованию. Термодинамическая темпера-[7, С.263]
Из рассмотренной кинетической теории стеклования следует согласующийся с экспериментальными данными вывод, что время релаксации обратно пропорционально скорости охлаждения вещества. Иначе можно сказать, что при температуре стеклования Тс произведение тш = const (формула Бартенева). Так как константа здесь равна kTc?/Uc (Uc — энергия активации при Гс), данное соотношение служит математическим определением температуры стеклования. Если скорость нагревания w+ = AT/At та же самая, что и скорость охлаждения, т. е. w~ = q, то температура размягчения ТС' = ТС и границы областей стеклования и размягчения совпадают.[7, С.40]
Это соотношение, впервые предложенное Бартеневым [40, с. 21], служит математическим определением температуры стеклования, где q — абсолютное значение скорости охлаждения; С — постоянная, равная, по Волькенштейну и Птицыну, &П/^Га(Тс); &&(ТС} — энергия активации при температуре стеклования. Постоянная С примерно равна 20 °С для неорганических и 10 °С для органических стекол. Читатель без особого труда разберется в физическом смысле константы С, обратившись к критерию Тернбулла — Коэ-на 3* и соотношениям термокинетики. Если скорость нагревания w та же, что и скорость охлаждения, т. е. w = q, то температура размягчения Гр равна Т0 и границы областей стеклования и размягчения совпадают.[6, С.86]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.