На главную

Статья по теме: Позволяет перерабатывать

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Тот факт, что скорость разложения перекиси зависит только от температуры, позволяет перерабатывать эти материалы литьем под давлением (шприцеванием) при высоких температурах и с коротким циклом вулканизации. Общая продолжительность цикла снижается благодаря использованию максимально допустимых температур цилиндра и сопла, не вызывающих разложения перекиси. Температура может меняться от 60 до 90 °С; во втором случае общая продолжительность цикла значительно ниже, чем в первом. Большое значение имеет и температура формы. Так, при 200 °С продолжительность вулканизации составляет всего 2 мин.[4, С.157]

Большой температурный интервал, разделяющий температуры плавления '{160°С) и разложения (>360°С) полимера, позволяет перерабатывать фторо-:пласт-42 в широком диапазоне температур. По термостабильности фторопласт-42 уступает только фторопласту-4 и фторопласту-4МБ (4МБ-2) и превосходит все •остальные фторопласты. Длительный прогрев фторопласта-42 (более 500 ч) при 145 и 200 °С не вызывает появления карбонильных групп и двойных связей в ИК-спектре полимера.[8, С.169]

Двухчервячные горизонтальные экструдоры. Конструктивная особенность этих Э.— большая емкость зоны инташтя, чем зоны сжатия, что позволяет перерабатывать в них не только гранулированные, но и высокодисперсные порошкообразные термопласты, имеющие большой насыпной объем. Преимущества двухчер-вячных У. перед одночервячнымп — более интенсивное перемешивание материала, обусловливающее его более равномерный нагрев, эффективную пластикацию при меньших давлениях [10—35 Мн/м2 (100—;>50 кгс/см*)] и более полное удаление летучих при экструзии (червяки двухчервячных 0. иногда имеют несколько зон декомпрессии). Однако конструкция двухчервячных Э. сложнее и на их обогрев расходуется больше энергии, чем на обогрев одночервячных (см. табл.).[12, С.462]

Двухчервячные горизонтальные экструдеры. Конструктивная особенность этих Э.— большая емкость зоны питания, чем зоны сжатия, что позволяет перерабатывать в них не только гранулированные, но и высокодисперсные порошкообразные термопласты, имеющие большой насыпной объем. Преимущества двухчер-вячных Э. перед одночервячными — более интенсивное перемешивание материала, обусловливающее его более равномерный нагрев, эффективную пластикацию при меньших давлениях [10—35 Мн1м? (100—350 кгс/см2)] и более полное удаление летучих при экструзии (червяки двухчервячных Э. иногда имеют несколько зон декомпрессии). Однако конструкция двухчервячных Э. сложнее и на их обогрев расходуется больше энергии, чем на обогрев одночервячных (см. табл.).[16, С.461]

Разработан оригинальный способ уменьшения выцветания серы и ТМТД из резиновых смесей [27], основанный на получении комплекса с диоксидом кремния. Использование такого комплекса позволяет перерабатывать резиновые смеси с высоким содержанием растворимой серы при температуре 135°С без ее последующей миграции и выцветания на поверхность резиновых смесей при охлаждении.[5, С.30]

При введении в полимеризационную смесь ВФ небольших количеств 1,1-дифторизобутилена, изобутилена [менее 3% (масс.)], бицикло[1, 2, 2]гептена-2 [138] получаются сополимеры ВФ с более низкой температурой плавления, что позволяет перерабатывать их без разложения методами экструзии и литья под давлением.[6, С.75]

Резиновые смеси. Б. совмещается с полиэтиленом, полиизобутиленом, сополимерами изобутилена и стирола; на основе таких смесей получают вулкапизаты с повышенной твердостью и хорошими диэлектрич. свойствами. Совместимость с полиэтиленом позволяет перерабатывать Б. в резиносмесителе при темп-pax выше 125° С вместе с полиэтиленовой пленкой, используемой для упаковки каучука. Б. не вулканизуется в присутствии каучуков с высокой ненасыщенностью (натурального и синтетич. изопренового, бутадиенового, бута диен-стирольного, бутадиен-нитрильного). Вулкапизаты смесей Б. с 15—20 мае. ч. хлоропренового каучука и хлорсульфированного полиэтилена обладают повышенной теплостойкостью.[13, С.178]

Резиновые смеси. Б. совмещается с полиэтиленом, полиизобутиленом, сополимерами изобутилена и стирола; на основе таких смесей получают вулканичаты с повышенной твердостью и хорошими диэлектрич. свойствами. Совместимость с полиэтиленом позволяет перерабатывать Б. в резиносмесителе при темп-pax выше 125° С вместе с полиэтиленовой пленкой, используемой для упаковки каучука. Б. не вулканизуется в присутствии каучуков с высокой ненасыщенностью (натурального и синтетич. изопренового, бутадиенового, бу-тадиен-стирольного, бутадиен-нитрильного). Вулкани-заты смесей Б. с 15—20 мае. ч. хлоропренового каучука и хлорсульфированного полиэтилена обладают повышенной теплостойкостью.[15, С.175]

Волокна могут быть рублеными (коротко- и длинноволокнистые) и непрерывными в виде войлока или ровницы. Поэтому волокнистые наполнители могут проявлять свойства, как близкие к дисперсным, так и усиливающие (армирующие). Использование рубленого волокна, особенно коротковолокнистого, позволяет перерабатывать такие материалы в изделия высокопроизводительными методами экструзии или литья под давлением.[9, С.20]

Все промышленные фторсодержащие полимеры, за исключением ПТФЭ, являются термопластичными полимерами и относятся к числу так называемых «плавких» фторопластов. Вязкость расплава при температуре переработки термопластичных фторсодержащих полимеров (ТФП) находится в пределах 103-М05 Па-с (104—106 П) (табл. VII. 1), что позволяет перерабатывать их всеми общепринятыми для обычных термопластов способами. Однако при переработке ТФП необходимо учитывать ряд факторов.[6, С.195]

Полиизобутилен набухает в диэтиловом эфире, бутилацетате, животных и растительных маслах. Он нерастворим в низших спиртах, ацетоне, этиленгликоле, глицерине. Благодаря насыщенности полимерных цепей полиизобутилен обладает высоким сопротивлением к тепловому и световому старению, а также повышенной химической стойкостью. Высокая термостойкость полиизобутилена позволяет перерабатывать его при 140—200°С, при этом молекулярная масса практически не изменяется. Термическое разложение полиизобутилена происходит при 300 °С и выше.[1, С.338]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
3. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
4. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
5. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
6. Пашин Ю.А. Фторопласты, 1978, 233 с.
7. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
8. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
9. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
10. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
14. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
17. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
18. Соколов А.Д. Литье реактопластов, 1975, 87 с.

На главную