На главную

Статья по теме: Регулировать молекулярную

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полимеризация в растворе позволяет регулировать молекулярную массу и молекулярно-массовое распределение полимера, получать структурно-однородные продукты. Она находит все более широкое применение в технологии производства многих промышленных полимеров. Для получения стереорегулярных полимеров, блок-сополимеров этот способ часто является единственно возможным для промышленного производства. Полимеризацией в растворе получают все стереорегулярные эластомеры (цис-1,4-по~ лиизопрен и полибутадиен), блок-сополимеры бутадиена и стирола, некоторые виды статистических их сополимеров, полиэтилен высокой плотности, стереорегулярный полипропилен, сополимеры этилена и пропилена, некоторые виды полистирола, полиметил-метакрилата и другие полимеры.[3, С.82]

При растворной полимеризации на катализаторах ТМК и АТК регулировать молекулярную массу полимера можно меньшими добавками водорода в сравнении с супензионным процессом. Свойства полимеров, получаемых полимеризацией в растворе, могут варьироваться в следующих пределах: плотность — от 940 до 960 кг/м3; ПТР —от 0,2 до 50 г/10 мин; ММР — от узкого до широкого.[5, С.109]

Добавляя при поликонденсации монофункциональные соединения, можно регулировать молекулярную массу продукта гюликонденсации. Такие добавки монофункциональных реакционноспособных соединений используют при получении олигомеров, применяемых для синтеза блок-сополимеров (см. с. 201).[4, С.150]

Добавляя при поликонденсации монофункциональные соединения, можно регулировать молекулярную массу продукта поликонденсации. Такие добавки монофункциональных реакционноспособных соединений используют при получении олигомеров, применяемых для синтеза блок-сополимеров (см. с. 201).[4, С.151]

В случае применения активаторов молекулярная масса сополимеров изменяется в зависимости от количества активатора [26]. Регулировать молекулярную массу сополимера можно, применяя в качестве сокатализатора смесь моно- и дихлоридов алюминия в разных соотношениях или смесь ароматических и алифатических углеводородов в качестве растворителя [27], а также изменяя концентрацию катализатора [41].[1, С.304]

Во-вторых, можно изменять наклон прямолинейного участка кинетической кривой к оси абсцисс, например для большей равномерности процесса уменьшать скорость полимеризации, что дает возможность легче регулировать молекулярную массу. Для этих целей в систему вводятся специальные низкомолекулярные вещества, которые называются ингибиторами в том случае, когда они меняют длительность индукционного периода, или замедлителями полимеризации, если они меняют ее скорость. Такими веществами являются бензохинон, нитробензол и др. (рис. 1.3).[3, С.29]

Одной из главных задач синтеза высокомолекулярных соединений является получение полимеров с заданной молекулярной массой. Так как степень поликонденсации зависит от продолжительности реакции, то обрывая реакцию на определенной стадии, можно регулировать молекулярную массу полимера. Однако этот путь не выгоден, так как при этом снижается конверсия. Кроме того, при эквимолекулярном соотношении компонентов образуется нестабильный полимер, так как функциональные группы различной природы могут реагировать друг с другом, что приводит к повышению молекулярной массы полимера.[1, С.163]

Полимеризация основаниями имеет ряд преимуществ перед полимеризацией кислыми катализаторами. Она позволяет за 2— 4 ч, а иногда и быстрее, при очень малых концентрациях катализатора, 10"2—10"4% (масс.), получать полимеры с молекулярными массами до 106 и выше без дозревания, а также получать жидкие каучуки, легко регулировать молекулярную массу полимеров и заменить их отмывку нейтрализацией катализатора. Поэтому она нашла широкое применение как в исследовательской практике, так и в промышленности, и будет рассмотрена подробнее.[1, С.475]

Полимеризация в присутствии оснований имеет ряд преимуществ перед полимеризацией под действием кислых катализаторов. Она позволяет за 2—4 ч (а иногда и быстрее) при очень малом массовом содержании катализатора (10~2—10~4%) получать полимеры с молекулярной массой до 106 и более без дозревания, получать жидкие каучуки, легко регулировать молекулярную массу полимеров и заменить трудоемкую стадию отмывки нейтрализацией катализатора.[7, С.284]

Для совершенствования технологии и исключения из процесса токсичного растворителя — метилхлорида в СССР разработан и освоен промышленностью процесс получения бутилкаучука в углеводородном растворителе" (изопентане) при температуре —85 ± ± 5 °С с использованием в качестве катализатора комплексных алюминийорганических соединений *. Каталитический комплекс получается контролируемым взаимодействием этилалюминийсескви-хлорида [продукт взаимодействия А1С13 и А1(С2Н5)3} с водой. Продолжительность, непрерывной полимеризации между промывками реактора около 10 сут. Новая технология позволяет-регулировать молекулярную массу и молекулярно-массовое распределение бутил-каучука в широких, пределах и получать полимеры, по свойствам не отличающиеся от бутилкаучука, получаемого при использовании метилхлорида.[2, С.149]

Подбором подходящих условий 'полимеризации можно изменять среднюю молекулярную массу и связанные с ней свойства полимеров. Так, при радикальной полимеризации повышение температуры реакции или содержания инициатора увеличивает число растущих радикалов. Так как скорость реакции цепи имеет первый порядок по концентрации растущих радикалов, а скорость реакции обрыва — второй порядок, то средняя молекулярная масса понижается при повышении скорости полимеризации. Снижение концентрации мономера также приводит к получению полимеров с небольшой молекулярной массой; при этом скорость полимеризации тоже снижается. Вследствие возможности протекания побочных реакций при высоких температурах и высоких концентрациях инициаторов молекулярную массу во многих случаях изменяют путем добавления регуляторов — веществ с высокими константами передачи цепи (см. раздел 3.1 и опыт 3-14). Уже при малых концентрациях эти вещества сильно снижают среднюю молекулярную массу. Скорость полимеризации при этом остается практически неизменной. Осколки «регуляторов» входят в состав молекул полимеров как концевые группы. Такими «регуляторами» являются прежде всего меркаптаны («-бутилмеркаптан, до-децилмеркаптан) и другие серосодержащие органические соединения (например, диизопропилксантогенидсульфид), а также га-логенсодержащие соединения, альдегиды и ацетали. В технике регуляторы играют важную роль при эмульсионной полимеризации прежде всего при получении полимеров на основе бутадиена. Регулировать молекулярную массу можно и при ионной полимеризации [28].[8, С.58]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
6. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
7. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
8. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.

На главную