На главную

Статья по теме: Существенному увеличению

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Теория ударной ионизации рассматривает условия, приводящие к существенному увеличению концентрации электронов в зоне проводимости диэлектрика. Сам акт ударной ионизации обычно представляют следующим образом. Электрон, находящийся в зоне проводимости, получает за единицу времени некоторую энергию А от электрического поля, а, с другой стороны, тратит энергию В на столкновения с колебаниями решетки (энергия В передается диэлектрику в виде теплоты). Если обеспечены условия, при которых А > В, то электрон, разгоняясь в электрическом поле, непрерывно увеличивает свою энергию А? относительно дна зоны проводимости. Как только Д? становится больше энергии ионизации /, равной ширине запрещенной зоны, то этот электрон с некоторой вероятностью может передать энергию / другому электрону, относящемуся к валентной (заполненной) зоне, переводя его при этом в зону[4, С.25]

Другой характерной особенностью винилацетата является его полярность и сравнительно высокая растворимость в воде — до 2,5% [1], что предопределяет характер процесса эмульсионной полимеризации в соответствии с существующей классификацией эмульсионных полимеризационных систем (см. гл. 1). Кроме того, эти свойства винилацетата способствуют существенному увеличению гетерофазности поли'меризационной системы 1[6] и получению широких молекулярно-массовых распределений '[6, 7].[2, С.194]

Таким образом, с помощью примесных молекул, используемых в качестве зондов, для полиэтилена удалось обнаружить различия в плотности аморфных областей в транскристаллических поверхностных слоях, морфология которых практически не зависит от температурного режима плавления и кристаллизации. Было установлено также, что резкое возрастание плотности аморфных областей в граничных слоях полимера не связано с транскристалличностью поверхностного слоя. Методом молекулярного зонда показано также, что температурные режимы плавления и кристаллизации пленок могут оказывать нивелирующее действие на изменение структуры поверхностных слоев таким образом, что энергетические характеристики подложки практически не будут проявляться. Важен лишь сам факт существования этой поверхности. Кроме того, при рассмотрении процессов, протекающих в граничных слоях полимеров, следует обращать внимание на возможность сочетания нескольких факторов, влияющих на формирование структуры. Так, плавление с неполным разрушением исходных структур на высокоэнергетических подложках может привести к образованию напряженных поверхностных структур, к существенному увеличению плотности аморфных областей в этих структурах. При отделении такой полимерной пленки от подложки напряженные структуры испытывают релаксацию, в ряде случаев проходящую через стадию аморфизации с последующей рекристаллизацией.[3, С.80]

Величина сил взаимодействия определяется интенсивностью теплового движения, следовательно, сильно зависит от температуры. Поэтому-то повышение температуры и приводит к существенному увеличению скорости всех релаксационных процессов.[5, С.20]

Существенная разница во влиянии давления на величину вязкости объясняется, по-видимому, различием конфигурации элементарных «единиц течения». У полиэтилена эти «единицы течения» гораздо проще, чем у полистирола, у которого каждая «единица течения» содержит около двенадцати бензольных колец. Столь сложная конфигурация и приводит к существенному увеличению пьезоэффекта вязкости.[5, С.53]

Существование остаточных напряжений может оказаться причиной ряда дефектов. Прежде всего на поверхности отливки могут образоваться тонкие волосные трещины, ориентированные вдоль направления потока. Волосные трещины иногда возникают вследствие слишком быстрого охлаждения отформованного изделия. Существование частей с различным поперечным сечением (или неравномерное охлаждение) приводит к возникновению в поверхностных слоях отливок растягивающих напряжений, вызывающих продольную ориентацию полимерных молекул и формирование фибриллярных надмолекулярных структур. Наличие этих ориента-ционных напряжений приводит к существенному увеличению продольной прочности.[6, С.448]

Существование остаточных напряжений может оказаться причиной ряда дефектов. Прежде всего на поверхности отливки могут образоваться тонкие волосяные трещины, ориентированные вдоль направления потока. Волосяные трещины иногда возникают вследствие слишком быстрого охлаждения отформованного изделия. Существование частей с различным поперечным сечением (или неравномерное охлаждение) приводит к возникновению в поверхностных слоях отливок растягивающих напряжений, вызывающих продольную ориентацию полимерных молекул и формирование фибриллярных надмолекулярных структур. Наличие этих ориентационных напряжений приводит к существенному увеличению поперечной прочности.[5, С.430]

Экспериментальные исследования влияния давления на вязкостные свойства показывают, что пьезоэффект вязкости у расплавов полимеров выражен значительно сильнее, чем у низкомолекулярных жидкостей. Так, при изменении гидростатического давления от 35 до 175 МПа эффективная вязкость полиэтилена, определенная при температуре 423 К и скорости сдвига 50 с~', увеличилась в 5,6 раза [102, 103]. Эффективная вязкость полистирола, определенная при температуре 469 К и скорости сдвига 70 с~', при повышении давления от 14 до 175 МПа возросла в 135 раз. Существенная разница во влиянии давления на вязкость объясняется, по-видимому, различием конфигурации элементарных «единиц течения». У полиэтилена эти «единицы течения» гораздо проще, чем у полистирола, у которого каждая «единица течения» содержит около двенадцати бензольных колец. Столь сложная конфигурация и приводит к существенному увеличению пьезоэффекта вязкости. Попытка количественного учета влияния гидростатического давления на вязкость предпринята в работе [90], автор которой использует для описания кривой течения уравнение (11.71).[6, С.74]

Деформация полиэтилена через шейку при комнатной температуре приводит к существенному увеличению периода а и объема элементарной ячейки.[7, С.350]

Обсуждена проблема диэлектрических потерь в неполяряых полимерах типа полиэтилена и сделан.вывод о значении боковых метальных групп, которые могут приводить к существенному увеличению диэлектрических потерь2098. Сделана попытка на большом числе литературных данных по диэлектрическим свойствам полимеров различного строения выявить логические пути и идеи, которыми можно объяснить связь химической структуры с электрическими свойствами2099.[11, С.279]

П. с. с Р KS 103 получают также радикальной полимеризацией аллилового спирта в присутствии неорга-нич. комплексообразователей (солей металлов 1—III групп, напр. СаС12, ZnCl2, LiCl. неорганич. к-т, напр., Н3РО4, НС1); молярное соотношение комплексообразо-ватель : мономер = 0,1 — 1,0. Комплексообразователь способствует существенному увеличению скорости процесса и мол. массы П. с.[10, С.44]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
2. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
3. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
4. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
5. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
6. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную