На главную

Статья по теме: Активность полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Оптич. активность полимеров обусловлена наличием дисспм.метрических (хиралышх) структур в макромолекулах: асимметрич. центров (чаще всего — асимметрич. атомов углерода), атронон.чомсрных звеньев или участков макромолекул со спиральной конформацией. Первые два типа структур локализованы в элементарном звено О. а. п. (в основной цепи или в боковых ветвях) и характеризуются конфигурацией звеньев полимера — его первичной структурой. Последний тин связан со вторичной структурой макромолекулы — ее конфирмацией, к-рая зависит как от строения элементарного звена, так и от природы и силы межмолекулярных взаимодействий. При наличии в макромолекуле сразу нескольких. типов хиральных структур их вклады в оптич. активность полимера суммируются.[5, С.242]

Оптич. активность полимеров обусловлена наличием диссимметрических (хиральных) структур в макромолекулах: асимметрич. центров (чаще всего — асимметрич. атомов углерода), атропоизомерных звеньев или участков макромолекул со спиральной конформацией. Первые два типа структур локализованы в элементарном звене О. а. п. (в основной цепи или в боковых ветвях) и характеризуются конфигурацией звеньев полимера — его первичной структурой. Последний тип связан со вторичной структурой макромолекулы — ее конформацией, к-рая зависит как от строения элементарного звена, так и от природы и силы межмолекулярных взаимодействий. При наличии в макромолекуле сразу нескольких типов хиральных структур их вклады в оптич. активность полимера суммируются.[8, С.240]

Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное Вещество. Даже если в организме происходит отщепление «лекарственной группы», поведение и функции полимерной основы м. б. изыми, чем у исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фармакология, действия собственно полимера практически не наблюдается и его можно считать биоинертзым. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозамепителп декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилэвого спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получению эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакология, препаратов прч совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-ментоорганич. полимеров: полисилоксаною, полимеров,[6, С.372]

Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное вещество. Даже если в организме происходит отщепление «лекарственной группы», поведение и функции полимерной основы м. б. иными, чем у •исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фарма-кологич. действия собственно полимера практически не наблюдается и его можно считать биоинертным. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозаменители декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилового спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получе-. нию эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакологич. препаратов при совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-ментоорганич. полимеров: полисилоксанов, полимеров,[9, С.372]

Оптическая активность полимеров в растворах в 5—26 раз больше, чем мономеров, что свидетельствует о частично спиральной структуре молекул и о наличии преимущественного направления закручивания.[7, С.503]

Образование оптически деятельных полимеров объясняется, по-видимому, тем, что сразу же после первого акта присоединения двух мономеров друг к другу возникают два различных радикала, которые, будучи диастереоизомерами, реагируют с неодинаковой скоростью. Так как такое же различие соблюдается при дальнейшем росте цепи, получается сополимер, в котором преобладает D- или L-конфигурация, т. е. продукт реакции оказывается оптически деятельным. Аналогично можно объяснить оптическую активность полимеров, синтезированных в присутствии оптически активных катализаторов.[2, С.196]

Оптическая активность полимеров 46—49, 503, 517[7, С.556]

активностью. Из этих работ следует, что биологическая активность полимеров обусловлена всей сложной структурой галактанового кора и боковыми цепями, состоящими из остатков арабинозы, а также конформационными особенностями полисахаридных фрагментов [1].[3, С.339]

реработки в изделия. Теплоемкость и плотность определяют важнейшие теплофизические величины — температуропроводность и тепловую активность полимеров. Тепловое расширение и изменение теплоемкости полимеров используются при исследованиях процессов их стеклования и размягчения. Характер изменения теплофизических свойств полимеров как при низких, так и при высоких температурах дает ценную информацию о их внутреннем строении.[1, С.254]

1.9. ОПТИЧЕСКАЯ АКТИВНОСТЬ ПОЛИМЕРОВ[4, С.153]

— прочности Гриффита 290 Тепловая активность полимеров 254 Тепловое движение 24, 294 Теплоемкость 254, 267 Теплопроводность 254, 258 Термический коэффициент расширения 261[1, С.390]

1.9. Оптическая активность полимеров......... .......[4, С.6]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
3. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
4. Нестеров А.Е. Справочник по физической химии полимеров Том1, 1984, 375 с.
5. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
6. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
7. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
8. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
9. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную