На главную

Статья по теме: Аморфными областями

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Фибрилла - нитевидное надмолекулярное образование с чередующимися кристаллическими и аморфными областями, с поперечным сечением примерно таким же, как поперечное сечение кристаллитов.[2, С.407]

Фибрилла представляет собой нитевидное образование с чередующимися кристаллическими и аморфными областями с поперечным сечением примерно таким же, как поперечное сечение кристаллита. Характерной ее особенностью является наличие достаточно четких боковых границ и преимущественная ориентация макромолекул в кристаллических и аморфных областях в направлении большой оси фибриллы.[7, С.101]

Брайнт [60, 61] рассматривает кристаллический полимер как единую сложную фазу, образованную кристаллическими и аморфными областями, и указывает на различный характер сил, действующих по разным направлениям в кристаллическом полимере. Эта модель кристаллического полимера сходна с моделью бахромчатых мицелл Германна и Гернгросса [62].[8, С.78]

Мага [1042] критикует общепризнанную теорию, рассматривающую кристаллические полимеры как состоящие из небольших кристаллитов, окруженных аморфными областями; он считает эту теорию противоречащей современным представлениям о процессах кристаллизации и данным, полученным при рент-гено- и электроноскопическом исследовании, и приходит к выводу, что основная единица структуры — длинный закрученный спиралью кристалл, из которого образуются сферолиты и особенности строения которого, а также порядок сочетания определяют свойства полимера.[17, С.156]

Если частично кристаллические микрофибриллы находятся под напряжением, то вызываемое им деформирование будет неоднородным с точки зрения молекулярных представлений, так как деформирование связано только с аморфными областями. Как показано в гл. 5, наибольшие напряжения испытывают натянутые сегменты цепей, на которые и распределяется деформация аморфной области. Поэтому следует ожидать, что напряжение, вызывающее разрыв цепей, придется на аморфные области.[3, С.188]

Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие ^монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов: максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика—порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [5], Келлера [6] и Шульца [7]. Наиболее важная и неожиданная особенность монокристаллов состоит в наличии практи-[4, С.47]

Существует несколько моделей, объясняющих морфологию цепей в микрофибрилле. Рентгенографические исследования приводят к выводу, что одним из способов надмолекулярной организации цепей, образующих микрофибриллу, является чередование складчатых кристаллов с неупорядоченными аморфными областями, через которые проходит сравнительно небольшое число проходных цепей, соединяющих соседние кристаллы (рис. 24). Такая модель микрофибриллы (модель Хоземанна—Бонара) наиболее широко привлекается для объяснения ряда физических свойств ориентированных полимеров.[10, С.58]

Из низкомолекулярных веществ можно получить образцы, закристаллизованные практически на 100 %. Полимеры не способны "закристаллизоваться полностью. В них области высокой упорядоченности (кристаллические области) всегда сосуществуют с областями меньшей упорядоченности, т. е. с аморфными областями (см. гл. VI). Последние играют важную роль при формировании всего комплекса физико-механических свойств кристаллического полимера. Поэтому кристаллические полимеры иногда называют частично кристаллическими. Доля кристаллических областей для разных полимеров может колебаться в весьма широких пределах (чаще всего от 20 до 80 %). Из-за высокого содержания аморфных областей понятие «температура стеклования» сохраняет определенный физический смысл и для кристаллических полимеров.[6, С.158]

Важной особенностью кристаллических полимеров является то, что они состоят не только из кристаллических, но и аморфных областей. При этом необходимо помнить, что представление о структуре кристаллического полимера как о совокупности четко разделенных фаз является известной идеализацией. На самом деле между кристаллическими и аморфными областями существуют участки с промежуточной степенью упорядочения. Резкая граница между кристаллитами и аморфными областями, как правило, отсутствует. Это в немалой степени связано с тем, что одна и та же макромолекула может находиться в нескольких кристаллитах, проходя при этом через несколько аморфных областей. Существование таких проходных цепей является характерной чертой кристаллических полимеров. Именно проходные цепи в конечном счете ответственны за прочность полимера, они в первую очередь принимают на себя основную нагрузку при деформировании полимера.[10, С.53]

В случае кристаллизующихся полимеров, изложенная выше картина значительно усложняется. Кристаллизация наступает всегда при температуре более высокой, чем Тс, а в ряде случаев и чем Гт [2] и тоже связана с резким ослаблением сегментального движения. Однако кристаллические области в полимерах составляют лишь большую или меньшую часть материала, они сосуществуют с аморфными областями, в которых сегментальное движение достаточно интенсивно. Свойства полимера при этом оказываются сильно зависящими от соотношения между содержанием обеих фаз, от их взаимного влияния и морфологии кристаллических образований.[1, С.40]

Рис. 2. Мицеллярная сетчатая структура с кристаллическими и аморфными областями (по Гормансу)[13, С.30]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
4. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
5. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
6. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
7. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
8. Амброж И.N. Полипропилен, 1967, 317 с.
9. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
10. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
11. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
12. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
13. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
14. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
18. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную