На главную

Статья по теме: Полимерных кристаллов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Отличительной особенностью полимерных кристаллов является то, что длина макромолекулы существенно превосходит размеры элементарных ячеек. Поэтому одна и та же макромолекула проходит через большое число элементарных ячеек. На рис. VI. 1 представлено схематическое изображение элементарной ячейки кристаллической решетки полиэтилена. Оси цепей направлены вдоль оси с. В случае полимерных кристаллов следует различать два типа геометрической периодичности вдоль оси макромолекулы. Первый тип определяется полной повторяемостью структуры и диктует размеры элементарной ячейки. Второй тип периодичности связан с размерами мономерных звеньев. Периодичности первого[4, С.169]

С повышением температуры амплитуды колебаний атомов или частей молекул увеличиваются и достигают критической величины, определяемой расстоянием между соседними частицами, что приводит к плавлению полимерных кристаллов и исчезновению кристаллической фазы. При плавлении полимера резко увеличивается свободный объем и ослабевают связи между цепями, хотя подвижность макромолекул как целого остается незначительной из-за большого внутреннего трения. Уменьшение коэффициентов теплопроводности кристаллических полимеров может быть объяснено также увеличением рассеяния в них тепловых волн вследствие изменения параметров элементарной ячейки и ослаблением межмолекулярного взаимодействия, связанного с увеличением расстояния между цепями. Уменьшению К кристаллических полимеров с повышением температуры может способствовать и рассеяние структурных фононов на границах аморфных и кристаллических областей, на границах раздела кристаллов и на границах раздела сферолитов. Кроме того, с повышением температуры уменьшается длина свободного пробега фононов, что также может приводить к уменьшению К.[3, С.257]

Все используемые в технике кристаллизующиеся материалы являются поликристаллитами. Иначе говоря, все они состоят из множества кристаллических областей, каждая из которых граничит с другими кристаллическими или аморфными областями. Поэтому морфология кристаллизующихся материалов носит очень сложный характер. По этой причине основные характеристики их изучают на монокристаллах. Полимеры не являются исключением. Полимерные монокристаллы выращивают из слабоконцентрированных растворов. При температуре кристаллизации способный к кристаллизации полимер высаживается из раствора в виде крошечных пластинок (ламелей), имеющих все характерные черты кристалла, например регулярные грани (видны при электронной микроскопии), и дающих дифракционные картины, присущие ^монокристаллам. Необходимость применения электронного микроскопа или оптического микроскопа с большим увеличением обусловлена очень малыми размерами полимерных кристаллов: максимальные размеры монокристалла ПЭВП составляют несколько мкм, в то время как его толщина очень невелика—порядка 100 А. Монокристаллы других полимеров имеют форму полых пирамид, которые часто закручиваются по спирали, что свидетельствует о существовании винтовых дислокаций. Детальное рассмотрение природы монокристаллов можно найти у Джейла [5], Келлера [6] и Шульца [7]. Наиболее важная и неожиданная особенность монокристаллов состоит в наличии практи-[1, С.47]

Дефектность полимерных кристаллов проявляется в расширении температурных интервалов термодинамических переходов и заметно влияет на механические свойства кристаллических полимеров.[4, С.170]

Кроме того, для полимерных кристаллов и кристалло-аморфных полимеров характерен топоморфизм, который не имеет аналогов в низкомолекулярных системах, но очень сильно влияет на макроскопические механические свойства полимеров, особенно при ориентации. (Возможности аналога ориентации простых тел будут рассмотрены в гл. XVI.)[8, С.322]

Правила отбора для полимерных кристаллов можно вывести из анализа трехмерных пространственных групп. Однако, ввиду цепного характера макромолекул, из к-рых построен такой кристалл, формально можно использовать свойства линейных групп, т. к. всегда в идеальном полимерном кристалле мысленно можно выделить «стержень», состоящий из нескольких цепей, оси к-рых параллельны друг другу, а сами макромолекулы имеют бесконечную протяженность в направлениях собственных осей. Выбрав в таком кристаллич.«стержне» соответствующее спектральное повторяющееся звено и подсчитав число атомов в нем (т), легко узнают общее число полос в спектре. По сравнению со спектрами изолированной макромолекулы в спектре кристалла всегда содержится большее число полос; при этом многие из полос в спектрах изолированных молекул расщепляются в спектрах кристаллов на несколько компонент в зависимости от числа цепей в кристаллографической ячейке. Однако величины этих расщеплений обычно незначительны, и в общем спектры полимерного кристалла и изолированной макромолекулы довольно близки или даже практически совпадают. Иногда для определения числа полос в колебательном спектре кристаллич. полимера пользуются понятием «локальная (или местная) группа». Для этого в кристалле мысленно выделяют малый объем, содержащий химич. группы, колебания к-рых исследуют, и рассматривают симметрию не всей пространственной группы кристалла, а лишь симметрию ближайшего окружения этих химич. групп. Такой подход возможен, однако использование его не всегда дает точные результаты.[19, С.534]

Правила отбора для полимерных кристаллов можно вывести из анализа трехмерных пространственных групп. Однако, ввиду цепного характера макромолекул, из к-рых построен такой кристалл, формально можно использовать свойства линейных групп, т. к. всегда в идеальном полимерном кристалле мысленно можно выделить «стержень», состоящий из нескольких цепей, оси к-рых параллельны друг другу, а сами макромолекулы имеют бесконечную протяженность в направлениях собственных осей. Выбрав в таком кристаллич.«стержне» соответствующее спектральное повторяющееся звено и подсчитав число атомов в нем (т), легко узнают общее число полос в спектре. По сравнению со спектрами изолированной макромолекулы в спектре кристалла всегда содержится большее число полос; при этом многие из полос в спектрах изолированных молекул расщепляются в спектрах кристаллов на несколько компонент в зависимости от числа цепей в кристаллографической ячейке. Однако величины этих расщеплений обычно незначительны, и в общем спектры полимерного кристалла и изолированной макромолекулы довольно близки или даже практически совпадают. Иногда для определения числа полос в колебательном спектре кристаллич. полимера пользуются понятием «локальная (или местная) группа». Для этого в кристалле мысленно выделяют малый объем, содержащий химич. группы, колебания к-рых исследуют, и рассматривают симметрию не всей пространственной группы кристалла, а лишь симметрию ближайшего окружения этих химич. групп. Такой подход возможен, однако использование его не всегда дает точные результаты.[20, С.531]

Дефекты, типичные для полимерных кристаллов, обычно называемых кристаллитами, показаны на схеме, предложенной Хозе-манном (рис. VI. 2).[4, С.170]

При повышенных температурах для полимерных кристаллов возможны либо полиморфные превращения из одной модифика-[3, С.274]

Таким образом, основной особенностью полимерных кристаллов является то, что они построены из цепей, находящихся в складчатой конформации (КСЦ).[4, С.172]

Вторичным следствием из главных свойств полимерных кристаллов является возможность разделения при переходах энтальпий и энтропии по меньшей мере на два терма. В следующей главе мы увидим, что в балансе этих термов при растворении или разделении аморфных фаз существенную роль может играть вклад растворителя — как в конфигурационные (это довольно очевидно), так и в конформационные термы (во втором случае сольватно- или комплексно-связанный растворитель может устранить нерегулярности сухой цепи, препятствующие кристаллизации или образованию мезофазы). Аналогия плавления и растворения [38] и обратных переходов показывает, что некристаллизующиеся полимеры могут образовывать сольватные формы кристаллов или мезофаз.[8, С.111]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
10. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
13. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
14. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
15. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
16. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
17. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
18. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
19. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
20. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
21. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
22. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную