На главную

Статья по теме: Амплитудах деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Характер зависимости | г\* | оту0 при больпшх амплитудах деформации показывает, что влияние больпшх деформаций на релаксационные свойства полимера по своему характеру аналогично влиянию непрерывного стационарного деформирования на вязкость. Поэтому можно полагать, что повышение амплитуды скорости деформации у о приводит к изменению области релаксационного спектра, отвечающей большим значениям времен релаксации, а область быстрых релаксационных процессов при этом не затрагивается. Положение здесь такое же, как и при изменении релаксационных свойств системы под влиянием установившегося течения. Это показывает возможность качественного рассмотрения воздействия вибраций с большими[5, С.321]

Испытания нескольких наноструктурных образцов при различных амплитудах деформации показали примерно равные величины напряжения насыщения <тн около 250 МПа (рис. 5.18а). После кратковременного отжига при 473 К стн также уменьшается и его значение достигает 150 МПа. Тем не менее это значение за-[2, С.213]

Подробное исследование усталостного поведения Си после РКУ-прессования было выполнено в работе [367]. Циклические испытания на растяжение-сжатие были проведены при амплитудах деформации в интервале 10~4-10~3 при комнатной температуре.[2, С.213]

Общими достоинствами электромагнитных преобразователей являются: возможность плавного регулирования частоты в довольно широких пределах; проведение измерений при варьируемых, но малых амплитудах деформации (доли процента), что позволяет проводить измерения строго в линейной области механического поведения исследуемого материала; использование электрических методов измерений, позволяющих находить комплексное отношение напряжения к силе тока (Z*3) без прямого определения механических характеристик — амплитуд сил и смещений и разности фаз; возможность проведения измерений на образцах небольших размеров (с массой до 2—3 г). В то же время приборы такого типа весьма слож'ны в изготовлении, наладке и калибровке, а также требуют довольно длительной и трудоемкой обработки экспериментальных данных, если не использовать для этой цели вычислительную технику.[4, С.135]

Большое значение для установления сроков службы покрытия имеют конкретные условия эксплуатации: температура, продолжительность контакта со средой, напряжения и другие факторы. Так, при циклических нагрузках в агрессивной среде долговечность покрытия будет зависеть от его жесткости и эластичности: при малых амплитудах деформации надежнее и долговечнее оказываются жесткие покрытия с высокими прочностными и адгезионными характеристиками (например, эпоксидные). При больших амплитудах целесообразнее, наоборот, менее прочные, но эластичные покрытия типа полиэтиленовых [30, 32].[3, С.190]

Измерительные схемы- прибора позволяют регистрировать: касательные напряжения с помощью датчика перемещений и сменного торсиона; нормальные напряжения (эта система измерений здесь не описывается, поскольку проблема измерения нормальных напряжений при сдвиговом течении не рассматривается в данной книге); колебания нижней плоскости, т. е. задаваемые колебания. Прибор укомплектован набором торсионов с жесткостью от 0,1 до 103 Н-м/рад (106—1010 дин-см/рад), а индукционный датчик перемещений с соответствующим вторичным прибором может работать в шести пределах — от 5 до 2000 мкм. В целом система измерения крутящего момента пригодна для работы в довольно широких пределах— от 5-10~7 Н-м до 5 Н-м, что отвечает интервалу касательных напряжений (при использовании набора конусов, имеющихся в комплекте рабочих узлов прибора) от Ь10~' до 1 • 107 Па. Система задания колебаний позволяет варьировать амплитуду деформаций в пределах от 1,6-10~3 до 3,1 -\Сгг рад. При использовании измерительного узла типа конус — плоскость с углом между образующей конуса и плоскостью 2° эти смещения отвечают деформациям от 5 до 100%. Однако вблизи нижнего предела измерений возможны отклонения от синусоидальной формы колебаний, так что наиболее целесообразно проводить измерения при амплитудах деформации, больших 5-10~3 рад. В обычном исполнении реогониометра оба сигнала — от задатчика колебаний и от смещений верхнего конуса — подаются на двухканальный самописец (потенциометр или осциллограф) и их амплитуды, а также разность фаз находятся «вручную», по записи на ленте самописца. Однако изготовитель прибора поставляет также дополнительное электронное оборудование для автоматической регистрации амплитуд сигналов и разности фаз колебаний с выходом на цифровые показывающие приборы. Измерительные схемы реогониометра работают на несущей частоте 5000 Гц и снабжены системой фильтров, что позволяет получать довольно четкие сигналы, легко поддающиеся расшифровке. В то же время использование системы фильтров делает незаметным для экспериментатора возможные ошибки, связанные с недостатками механической части прибора (это удобно для серийных измерений, но может привести к серьезным ошибкам при научных исследованиях).[4, С.131]

Известно, что усталостные свойства коррелируют с формой петли гистерезиса при циклических испытаниях [373, 378]. Это утверждение становится более очевидным, если учесть, что параметр энергии Баушингера связан с упругой энергией, запасаемой в образце во время циклической деформации. Более наглядным является анализ формы петли гистерезиса за цикл испытаний при сравнимых амплитудах деформации. При этом чем выше среднее значение энергетического параметра, тем лучше усталостные свойства.[2, С.219]

Динамические нормальные напряжения, рассматриваемые в обобщенных молекулярно-кинетических моделях полимерных систем, так же как и динамические функции, обсуждавшиеся для этих моделей в гл. 3, относятся к области малых амплитуд, когда коэффициенты нормальных напряжений, равно как и модули, не зависят от амплитуды деформации. Поэтому проверка теоретических результатов должна проводиться при измерениях динамических нормальных напряжений, возникающих при малых амплитудах деформации. Это оказывается весьма сложной экспериментальной задачей, поскольку сами нормальные напряжения при малых деформациях представляют собой эффект второго порядка по отношению к касательным напряжениям. Поэтому измерения динамических нормальных напряжений связаны с существенно большими экспериментальными ошибками и большей неопределенностью результатов, чем модуля упругости. Тем не менее эксперименты показывают, что возникающие при сдв^-говых малоамплитудных колебаниях динамические нормальные напряжения качественно неплохо описываются формулами, полученными для моделей статистических клубков.[5, С.344]

- Если амшштуда^деформацииу 0 увеличивается, то отклик системы яа нагружение постепенно перестает быть линейным, хотя он остается периодическим. Этому отвечает постепенное искажение формы фигуры, получаемой в координатах т — у, как показано на рис. 3.41. Можно ввести усредненные за цикл характеристики динамических свойств материала при больших амплитудах деформации, определяемые отношением амплитудных значений напряжения к деформации и площадью фигуры на рис. 3.41, которая имеет физический смысл механических потерь за цикл деформирования. Параметрами системы формы отклика на внешнее воздействие можно считать абсолютное значение модуля[5, С.318]

полимеров при малых амплитудах деформации и их разрушение[1, С.228]

среднее и амплитудное значение а. При амплитудах деформации е(|, не превосходящих пределы линейного соотношения между ст и е, последняя изменяется при этом также по синусоидальному закону[6, С.318]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
3. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
4. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
5. Виноградов Г.В. Реология полимеров, 1977, 440 с.
6. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
7. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную