На главную

Статья по теме: Бифункциональные соединения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Некоторые бифункциональные соединения не используются для синтеза полимеров лишь потому, что не найдены еще катализаторы данной реакции. Так, например, из пропилена и других а-олефинов не удавалось получить высокомолекулярный продукт до тех пор, пока не был .найден подходящий катализатор. Для винилиденцианида СН2 = C(CN)2 также не так давно найдены катализаторы, в присутствии которых он полимеризуется с образованием высокомолекулярного продукта. Так, по мере нахождения новых методов синтеза и новых катализаторов все большее число низкомолекулярных соединений может участвовать в синтезе полимеров.[4, С.58]

Для получения блок-сополимеров используют как полимеры, так и олигомерные бифункциональные соединения, концевые группы которых могут инициировать реакцию. Так, полипропиленоксид, содержащий концевые гидроксильные группы, может быть использован для инициирования полимеризации этиленоксида с образованием блок-сополимеров («плюроники») следующего строения:[3, С.65]

С хлорсульфоновыми группами взаимодействуют с образованием поперечных связей также многие бифункциональные соединения, например оловоорганнчсскне, олигомсры с гидрок-снметильными, эпоксидными и другими функциональными группами.[6, С.180]

При поликонденсации бифункциональных соединений образуются линейные полимеры (табл. 5.4). Если функциональность мономера больше двух, то образуются разветвленные и трехмерные полимеры. Количество функциональных групп в макромолекуле при этом возрастает по мере углубления реакции. Для синтеза волокнообразующих полимеров наибольший интерес представляют бифункциональные соединения.[2, С.263]

Исходными продуктами для синтеза силоксановых каучуков обычно служат бифункциональные органосиланы RR'SiX2, где R и R' — органические радикалы (например, СН3, С2Н5, CeHs, CF3CH2CH2, NCCH2CH2, CH2 = СН; иногда R' = H), а X — алк-окси-, ацилокси-, аминогруппы, атомы галогена, водорода и другие функциональные группы. Наиболее доступны диорганодихлорси-ланы RR'SiCl2, методы синтеза которых описаны в [2, 18, 19]. Их либо используют непосредственно для получения каучуков, либо предварительно получают из них циклосилоксаны, силан- и силоксандиолы и другие бифункциональные соединения, играющие роль мономеров.[1, С.465]

Исходные вещества выдерживают при-95°С в течение 24 ч, отгоняя выделившийся хлористый водород. Затем добавляют бензол, промывают водой и выделяют кристаллический продукт с т. ил. 130 °С. Этот же стабилизатор получают, используя в качестве ал-киллрующего агента 2,б-ди-7'рет-бутил-4-метоксимстилфенол [6]. Вторую группу трисфенолышх стабилизаторов составляют соединения, в которых ароматические ядра присоединены к углеводородной цепочке КСН -СП2— СП- , где К-=Н, СН3 или СеН5. Такие стабилизаторы получают взаимодействием алкилфеполоп с ненасыщенными альдегидами, имеющими п.р-лпойную связь [7], а также с р-галогенальдегидами и р-гидрокотальдсгидами [8]. Эти альдегиды реагируют с алкилфеполами как бифункциональные соединения: присоединяют дне молекулы а л кил фенол а по углероду альдегидной группы и одну — по [3-атому углерода:[5, С.282]

Бифункциональные соединения — диалкил (арил)дигидроксиси-ланы могут образовывать полимеры по схеме:[7, С.242]

Смешанные бифункциональные соединения, содержащие аминогруппы, например аминокислоты, также взаимодействуют с диизоцианатами. Проводя реакцию при достаточно низких температурах, чтобы свести к минимуму реакцию по карбоксильной группе, можно получить продукт моноприсоединения (т. е. производное мочевины) натриевой соли аминокислоты по аминогруппе [193][9, С.374]

Различные низкомолекулярные бифункциональные соединения были использованы для соединения полимерных цепей, содержащих реакцион-носпособные группы.[9, С.310]

Наиболее высокую эффективность проявляют бифункциональные соединения на основе п-оксвдифенил- и п-оксифенил-в-нафтшшми-[12, С.65]

Смеси, содержащие перекиси бензоила и дикумила, а также бифункциональные соединения, напр, бис-mpem-бутилпероксидиизопропилбензол, больше подвержены подвулканизации, чем смеси с аминами. Поэтому перекиси применяют обычно вместе с замедлителями подвулканизации, напр, с дисалицилальпроппленди-амином. Ускорители перекисной вулканизации Ф. к.— низкомолекулярные ненасыщенные соединения. При вулканизации перекисью бензоила применяют обычно Г»),М-метилен-<>ш;-акриламид, перекисью дикумила — диаллилтерефталат или бис-диаллиамид терефталевой к-ты. При использовании дитиолов в сочетании с третичными аминами получают смеси, не склонные к подвулканизации. При вулканизации Ф. к. полифункцио-[10, С.401]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
8. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
9. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
12. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную