На главную

Статья по теме: Коэффициентов расширения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Причина наличия отрицательных коэффициентов расширения вдоль оси макромолекулы — вращение звеньев вокруг связей С — С, которое усиливается с ростом температуры и приводит к сокращению макромолекулы. Так, для проявления сокращения полиэтилена угол вращения должен быть не менее 13°.[5, С.366]

Различия в свободных объемах полимера и растворителя являются причиной различия их термических коэффициентов расширения, которые значительно меньше у полимера, чем у растворителя. Поэтому при комнатных, и в особенности при повышенных температурах, мономерная жидкость должна расширяться значительно больше, чем лолямер-ная. Однако растворитель в растворе находится как бы в уплотненном состоянии и подобен сконденсированному сжатому газу. Теплота, затраченная на это «сжатие», должна быть равна «теплоте испарения* ц иметь противоположный знак, Этот отрицательный вклад, являющийся как бы результатом взаимодействия молекул растворителя друг с другом, добавляется к положительной эдтальпйи смешения — результату'дисперсионного взаимодействия между неполярными полимером и растворителем.[2, С.400]

Различия в свободных объемах полимера и растворителя яа-ляются причиной различия их термических коэффициентов расширения, которые значительно меньше у полимера, чем у растворителя. Поэтому при комнатных, и в особенности при повышенных температурах, мономерная жидкость должна расширяться значительно больше, чем полимерная. Однако растворитель в растворе находится как бы в уплотненном состоянии и подобен сконденсированному сжатому газу. Теплота, затраченная на это «сжатие», должна быть равна «теплоте испарения» к иметь противоположный знак. Этот отрицательный вклад, являющийся как бы результатом взаимодействия молекул растворителя друг с другом, добавляется к положительной энтальгши смешения — результату дисперсионного взаимодействия между неполярными полимером и растворителем.[8, С.400]

В процессе вулканизации происходит уплотнение упаковки каучуков с ростом плотности смеси примерно на 0,1 %, т. е. с уменьшением объема. Кроме того, в результате разностей термических коэффициентов расширения металлических форм и резины размеры формованного резинового изделия всегда меньше, чем размеры формы, в которой оно вулканизовалось. Разность размеров изделия и формы при комнатной температуре, выраженную в процентах, называют усадкой и учитывают при конструировании форм. В общем случае усадка зависит от температуры вулканизации[12, С.99]

Полученное выражение содержит только определяемые непосредственно из эксперимента коэффициенты расширения и требует знания состава системы. Оно отличается от обычного уравнения тем, что в него входят величины суммарных коэффициентов расширения и объемные доли компонентов. Это делает удобной экспериментальную проверку уравнения. Оно может быть также использовано в качестве критерия образования истинной микрогетерогенности в" смеси или в блок-сополимере. Действительно, это уравнение должно соблюдаться только при микрорасслоении системы на две фазы. Если обе фазы или жесткие блоки в системе распределены равномерно и их функция сводится только к образованию нелокализованных узлов пространственной структуры (в соответствии с представлениями, развиваемыми для полимерных гелей [372]), то систему нельзя рассматривать как микрорасслоившуюся и, следовательно, второй переход будет связан с распадом узлов пространственной сетки, как при обычном стекловании в гомогенной системе. В этом случае уравнение Симхи — Бойера должно быть применено в обычном виде, даже если наблюдаются две тем-[11, С.243]

Одно из типичных применений полипропилена — плакировка резервуаров, предназначенных для транспортировки и хранения химически агрессивных жидкостей, в том числе различных продовольственных товаров. Известной помехой в изготовлении крупных плакированных баков служит различие термических коэффициентов расширения полипропилена и стали,' что не является, впрочем, конструкционно неразрешимой задачей [13]. В последние годы[4, С.298]

Усиливающее действие наполнителей тесно связано также с молекулярными движениями в полимерах [546]. Резкое.падение прочности наполненных каучуков при понижении температуры ниже Тс по сравнению с ненаполненными связывается с невозможностью релаксации напряжений, возникающих ниже Гс вследствие разности термических коэффициентов расширения полимера и наполнителя. Это приводит к снижению адгезии, и, таким образом, в наполненных системах подвижность кинетических элементов влияет не только на деформационные процессы и развитие дефектов, но и на когезию. Поэтому температурная зависимость усиливающего действия и прочность наполненных систем на основе аморфных полимеров определяются подвижностью элементов системы независимо от того, является ли полимер эластомером или термопластом. Реализация подвижности приводит к повышению как прочности, так и эффектов усиления.[11, С.272]

Полимеры обладают наибольшей тепловой усадкой (табл. 10.2), примерно в 10—20 раз большей, чем у металлов, поэтому при конструировании металлических прессформ необходим учет усадки полимеров. Тепловая усадка является причиной потери герметичности уплотнительными узлами при низких температурах вследствие стеклования резин и резкого различия коэффициентов расширения металла и резины. Коэффициенты линейного расширения стали и резин в застеклован-ном состоянии отличаются в 6—7 раз (табл. 10.2 и 10.3), вследствие этого усадка резины происходит значительно быстрее и в уплотнительных узлах образуются неплотные контакты и даже зазоры, приводящие к полной потере герметичности.[1, С.261]

Компаунды подразделяются на пропиточные (обычно ненаполненные) и заливочные, применяемые с наполнителями. Условия работы и механизм разрушения компаундов весьма свой образны, что затрудняет их выбор для данной конструкции ц,, обычным диэлектрическим и физико-механическим характеру стикам. Как правило, на конструкции (часто сложной конфпгу рации), в которых используют заливочные компаунды, не действуют значительные внешние нагрузки, которые могут привест < к разрушению компаунда. Обычно компаунд разрушается по,; действием внутренних напряжений, возникающих вследствие or раничения термических и усадочных деформаций компаунда же сткими конструкциями. Напряжения, возникающие вследствп • разности термических коэффициентов расширения компаунда г конструкции, будут более подробно рассмотрены ниже. Здес, только отметим, что эти напряжения действуют в течение длительного времени, что часто приводит к разрушению изделий ш-в момент изготовления, а в процессе эксплуатации, и, следова тельно, к аварийному выходу оборудования из строя. Поэтом1 для прогнозирования времени жизни изделия в данных уел) виях необходимо изучение процессов релаксации внутреншк напряжений и длительной прочности материала в сложных нолях внутренних напряжений.[9, С.156]

Гомополимеры и бинарные смеси на их основе исследовали дилатометрическим методом. В табл. V. 1 приведены данные для исходных компонентов и их смесей, полученные из экспериментальных зависимостей удельного объема от температуры. Как видно из таблицы, во всех случаях Тс обоих компонентов остаются в смесях практически неизменными, что указывает на сосуществование в системе двух независимых фаз. Произведение АаГс для каждого компонента близко к универсальному значению в теории Симхи — Бойера, хотя для поликарбоната это значение несколько завышено. В последнем столбце таблицы представлены значения констант, вычисленные по уравнениям (V. 29). Эти значения сильно отличаются от значений констант, найденных в данной работе экспериментально для каждого компонента отдельно (они в 1,5—2 раза больше). В то же время произведение Да-Т0 меньше значений соответствующих констант для каждого компонента (близкие значения наблюдаются только для ПММА). Таким образом, приведенные данные показывают, что исследуемые системы не описываются уравнениями (V.29)'. Это указывает на отсутствие полного разделения системы на две микрофазы и на наличие взаимодействий между компонентами, вызывающих отклонения от теоретических расчетов по уравнениям (V. 29). В этом случае не должна сохраняться аддитивность термических коэффициентов расширения компонентов в каждой из трех температурных областей.[11, С.245]

Ниже приводятся температурные зависимости термических коэффициентов расширения ПЭВД:[10, С.12]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
8. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
9. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
10. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
11. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
12. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
15. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.

На главную