На главную

Статья по теме: Полимеров определяются

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Свойства полимеров определяются не только гибкостью и химическим составом макромолекул, но и их взаимным расположением, т. е. структурой. Практически характер структурообразования в полимерах зависит от гибкости макромолекул и энергии межмолекулярного взаимодействия, которое может проявляться как на уровне самых низших структурных элементов — элементарных звеньев, так и на уровне более сложных образований — сегментов и целых макромолекул. Кроме того, межмолекулярное взаимодействие в полимерах, как и в низкомолекулярных веществах, определяет агрегатное состояние.[22, С.59]

Свойства полимеров определяются не только гибкостью и химическим составом макромолекул, но и их взаимным расположением, т. е. структурой. Практически характер структурообразования в полимерах зависит от гибкости макромолекул и энергии межмолекулярного взаимодействия, которое может проявляться как на уровне самых низших структурных элементов — элементарных звеньев, так и на уровне более сложных образований — сегментов и целых макромолекул. Кроме того, межмолекулярное взаимодействие в полимерах, как и в низкомолекулярных веществах, определяет агрегатное состояние.[25, С.59]

Оптические свойства полимеров определяются строением электронных оболочек атомов, из которых состоят молекулы. Оптические свойства полимеров, характеризующие их взаимодействия с электромагнитным излучением, обычно изучаются в диапазоне длин волн X = v/v (где v — скорость, a v -у- частота излучения) примерно от 10~4 до 10~9 м, что эквивалентно изменению частот от 1017 до 1012 Гц. Этот спектральный диапазон разделяется на три поддиапазона: ультрафиолетовый (3-10~9—4-10~7м); видимый ((4-н8)Х Х10~7 м )и инфракрасный (8-10~7—10~4 м). Электромагнитное излучение может проходить через полимер (пропускание), отражаться, поглощаться, преломляться и рассеиваться в нем. В реальных условиях чаще всего имеет место сочетание этих явлений. 9.1.1. Явления при взаимодействии излучения с веществом[4, С.232]

О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы *, но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс 3-Ю3—15-Ю3, т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формования и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов.[3, С.197]

Свойства таких полимеров определяются анизотропией их структуры, размерами ориентированных доменов и силами, обеспечивающими стабильность этих доменов. За исключением полимеров с линейными алкильными боковыми группами, для которых термомеханические и диэлектрические свойства широко изучены и описаны [41], свойства других полимеров этого класса очень мало изучены.[18, С.149]

Физические свойства полимеров определяются их химическим строением. Однако взаимосвязь между физическими свойствами и химическим строением полимеров очень сложна. Для понимания этой связи необходимо прежде всего рассмотреть такое понятие, как гибкость цепи полимера.[6, С.77]

Физические свойства полимеров определяются их химическим строением. Однако взаимосвязь между физическими свойствами и химическим строением полимеров очень сложна. Для понимания зтой связи необходимо прежде всего рассмотреть такое понятие, как гибкость цепи полимера.[10, С.77]

Физические состояния полимеров определяются как кинетической энергией частиц (агрегатными состояниями), так и их взаимным расположением в пространстве (фазовыми состояниями) [рис. 3.1].[1, С.123]

Диэлектрические потери полимеров определяются двумя физическими причинами: электрической проводимостью (сквозной ток) и дипольно-релаксационной поляризацией (ток замедленной поляризации). Понятно, что химическое строение, физическая структура, фазовое, агрегатное и физическое состояние будут формировать значение диэлектрических потерь.[12, С.151]

Электрические свойства полимеров определяются процессами движения электрических зарядов, как связанных с макромолекулой, так и свободных. Движение электрических зарядов описывается уравнениями Максвелла, решения которых при заданных граничных и начальных условиях для распределения зарядов и токов совместно с уравнениями связи (1)—(2) и уравнением непрерывности электрического тока (3) позволяют определить в любой точке среды в момент времени t векторы[15, С.9]

Свойства полиуретановых полимеров определяются не-:колькими взаимосвязанными факторами, основные из которых — мо-[екулярный вес, склонность к кристаллизации и плотность попереч-1ых сшивок. Молекулярный вес между двумя узлами разветвления Мс) зависит от степени поперечного сшивания. На способность к кри-:таллизации оказывает влияние наличие сильных межмолекулярных 1заимодействий, а также жесткость полимерных цепей. В последнее фемя были сделаны попытки установить взаимосвязь между свой-ггвами полиуретанов и их структурой, и хотя полученные результаты носят лишь частично количественный характер, все же химик, разрабатывающий полимерные композиции для специфических при-ленений, уже может использовать эти данные.[8, С.41]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
8. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
9. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
12. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
13. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
14. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
15. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
18. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
19. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
20. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
21. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
22. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
25. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
26. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
27. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
28. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
29. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
30. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
31. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную