На главную

Статья по теме: Увеличение прочности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Увеличение прочности образца с ростом молекулярной массы и усилением степени ориентации цепей более детально иллюстрируется на рис. 1.13. При малой молекулярной массе легко проявляется лабильность цепи и прочность образца зависит исключительно от прочности межмолекулярного взаимодействия. Заметная макроскопическая прочность достигается лишь при молекулярной массе, достаточной для образования физических поперечных связей в результате перепутывания или складывания цепей. Прочность волокна в интервале значений молекулярных масс (1,5—3) 104 г/моль увеличивается с ростом[2, С.21]

Максимальное увеличение прочности резин обеспечивает высокодисперсная двуокись кремния с удельной поверхностью (175 ч- 380) • 103 м2/кг и диаметром частиц 5—40 нм (аэросил и другие марки), меньшее — двуокись кремния с удельной поверхностью (30-И50) -103 м2/кг (белые сажи У-333 и БС-150), двуокись титана, карбонат кальция, каолин. К ним иногда добавляют малоусиливающие наполнители: диатомиты, кварцевую муку, окись цинка. В качестве термостабилизаторов используют окислы и другие соединения переходных металлов, чаще всего — окись железа, а также печную сажу ПМ-70. Вводя дифенилсиландиол, метил-фенилдиметоксиеилан или полидиметилсилоксандиолы с 8% (масс.) ОН-групп и более, получают резиновые смеси, хранящиеся без структурирования от 2 до 12 мес. [3].[1, С.489]

Экспериментальные данные Регеля и Лексовского [75], полученные для долговечности частично-ориентированного волокна ПАН сравниваются на рис. 3.11 с теоретическими кривыми, полученными с помощью уравнения (3.32). Следует подчеркнуть, что увеличение прочности благодаря лучшей ориентации волокна ПАН (или его модельного представления) достигает Ч^оДто = 5. Аналогичные значения увеличения прочности (в 2—5 раз) при ориентации образцов были получены для ПЭ, ПП, ПС, ПВХ, ПММА, ПА [51, 54]. В какой-то степени ограниченный рост жесткости в данных экспериментах, как можно заметить, указывает на то, что ориентированные «элементы» являются не просто сильно выпрямленными сегментами, а скорее молекулярными доменами с небольшой анизотропией. Последнее не снимает предположения о том, что разрушение элемента, по существу, представляет собой разрушение наиболее сильно напряженных цепных молекул. Так будет в случае,[2, С.88]

По-видимому, представляют интерес два результата расчетов, имеющие отношение к влиянию ориентации полимерной сетки на концентрацию дефектов и прочность: интервал углов ориентации молекул, в пределах которого наиболее вероятно разрушение элементов, узок, а увеличение прочности в результате лучшей одноосной ориентации ограничено. Первый эффект для случайно ориентированных полимерных сеток представлен на рис. ЗЛО, где первоначальное распределение элементов[2, С.86]

Если можно одновременно увеличить прочность и деформируемость полимера, то следует ожидать значительного увеличения его сопротивления удару. Подобный эффект достигается путем частичной ориентации неориентированного хрупкого полимера. Так, для ПС, вытянутого до удлинения К = 3,4, Реттинг [108] отмечает увеличение прочности при растяжении от 47 до 80 МПа и деформации при разрыве от 7 до 22%. Рабочая группа международного объединения по чистой и прикладной химии (IUPAC), занимающаяся вопросами «структуры и свойств промышленных полимеров», систематически исследовала влияние ориентации различных образцов ПС (гомополи-меров, а также ПС, модифицированного каучуком) на его оптические и механические свойства [109, ПО]. Было обнаружено, что удельная ударная вязкость ап ненадрезанного образца гомополимера возрастала от ~3 кДж/м2 при А,= 1[2, С.276]

Если природа разрушенных элементов не изменяется в процессе обработки образца или его испытания на разрушение, то (3 можно полагать постоянным. Концентрация локальных напряжений YO/CTO, которая в данном случае равна отношению модулей Е/Е),, оказывает наибольшее влияние на у- Поэтому из данной теории следует, что увеличение прочности эквивалентно возрастанию жесткости. Это следствие основано на предположении, что элементы действительно разрушаются при критической локальной деформации (кинетический вариант критерия Сен-Венана — максимума деформации). Иное объяснение[2, С.88]

Физико-механические показатели солевых вулканизатов зависят от ряда факторов, из которых доминирующими являются концентрация карбоксильных групп и природа катиона солевой сшивки. С увеличением содержания метакриловой кислоты в сополимере возрастают напряжение при удлинении 300% и сопротивление разрыву вулканизатов. Особенно сильное увеличение прочности происходит в бутадиен-стирольном карбоксилсодержащем полимере при повышении содержания метакриловой кислоты до 2—3% (рис. 2) [1]. С увеличением радиуса катиона наблюдается линейное возрастание напряжения при удлинении 300% и сопротивления разрыву резин из СКС-30-1. Максимальными сопротивлением, разрыву и эластичностью в широком температурном интервале характеризуются резины с Ва2+ [7].[1, С.401]

Как следует из данных табл. 4, предел прочности при растяжении при 100 °С для ненаполненных резин, получаемых на основе некоторых каучуков регулярного строения, выше, чем для наполненных резин на основе некристаллизующихся каучуков. Это объясняется тем, что в условиях неравновесного деформирования происходит кристаллизация каучука. Образующиеся при этом физические узлы (кристаллиты) достаточно стабильны до 100°С и выше, что и вызывает увеличение прочности резин.[1, С.88]

Независимо от подобных моделей, опираясь исключительно на статистические соображения, Колеман и Марквардт разработали представляющую интерес теорию кинетики разрушения волокна (рассмотрена в работе [7]). Они особенно тщательно исследовали распределение времени жизни волокна под действием постоянной и переменной нагрузки и влияние его длины, скорости нагружения и размеров пучка на прочность волокна или пучка волокон (рис. 3.3 и 3.4). Следует отметить два статистических эффекта: меньшую прочность пучка по сравнению с одиночным волокном (из-за ускоренного роста вероятности его ослабления К после разрыва одного волокна в пучке) и увеличение прочности с ростом скорости нагружения, получаемой в результате уменьшения времени пребывания волокна при последующих значениях нагрузки. В работе [8] определены средние значения прочности при растяжении пучка из 15 одиночных волокон ПА-66 и бесконечно большого пучка волокон. Зависимость прочности от скорости нагружения показана на рис. 3.3.[2, С.63]

О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы *, но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс 3-Ю3—15-Ю3, т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формования и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов.[4, С.197]

Из формулы (11.40) видно, что увеличение прочности при ориентации происходит за счет увеличения со~' в 6 раз и уменьшения!/^ X в 1,7 раза, т. е. ожидается увеличение в 3,5 раза, тогда как, по данным [61], для капрона при 6-кратной вытяжке происходит увеличение стк<°) в 6,3 раза. Следует учесть, что при вытяжке длины микротрещин могут уменьшаться, что объясняет более высокую экспериментальную прочность.[5, С.324]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
10. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
11. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
12. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
13. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
14. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
15. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
16. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
19. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
20. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
21. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
22. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
23. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
24. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
25. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
26. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
27. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
28. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
29. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
30. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
31. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
32. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
33. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
34. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
35. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
36. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
37. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
38. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
39. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
40. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.
41. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.
42. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную