На главную

Статья по теме: Подвижность молекулярных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Подвижность молекулярных звеньев в полимерах обусловлена возможностью взаимного поворота ординарных С—С-связей без изменения валентного угла ф и расстояния между атомами углерода (рис. 14). Тепловое движение молекул, состоящее во вращении молекулярных звеньев около ординарных С—С-связей, приводит к изгибу и свертыванию молекулярных цепей каучука (рис. 15).[2, С.82]

Подвижность молекулярных цепей на заключительных стадиях отверждения весьма ограничена. В связи с этим в резите образуются далеко не все поперечные связи, к-рые теоретически возможны, и всегда содержатся олигомерные продукты. При этом отдельные цепи тесно переплетены между собой и соединены не только валентными, но и водородными связями. При нагревании резит из-за ослабления водородных связей несколько размягчается. Отвержденные Ф.-ф.с. не обнаруживают кристаллич. структуры.[8, С.359]

Подвижность молекулярных цепей на заключительных стадиях отверждения весьма ограничена. В связи с этим в резите образуются далеко не все поперечные связи, к-рые теоретически возможны, и всегда содержатся олигомерные продукты. При этом отдельные цепи тесно переплетены между собой и соединены не только валентными, но и водородными связями. При нагревании резит из-за ослабления водородных связей несколько размягчается. Отвержденные Ф.-ф.с. не обнаруживают кристаллич. структуры.[11, С.359]

При охлаждении-среднее значение энергии теплового движения и подвижность молекулярных звеньев уменьшаются, движение принимает характер преимущественно вращательного качания, поэтому молекулы каучука при пониженных температурах находятся в менее свернутом состоянии. При некоторой температуре, которая называется температурой стеклования, молекулы каучука принимают относительно вытянутую форму и каучук становится твердым и хрупким, способным только к упругим деформациям, т. е. переходит в стеклообразное состояние. С повышением температуры подвижность молекулярных звеньев, наоборот, увеличивается, поэтому в области высокоэластического состояния повышение температуры приводит к увеличению деформации при действии заданной нагрузки. При дальнейшем повышении .температуры в значительной степени начинают развиваться необратимые пла-[2, С.83]

Редко расположенные разветвления и поперечные связи между молекулами не влияют на подвижность молекулярных звеньев и тем самым на температуру стеклования. Наоборот, часто расположенные разветвления и поперечные связи и усиленное межмолекулярное взаимодействие вследствие наличия полярных групп приводят к понижению подвижности молекулярных звеньев и к повышению температуры стеклования. Поэтому натуральный каучук имеет более низкую температуру стеклования по сравнению с натрий-дивиниловым каучуком, имеющим разветвленную структуру. Дивинил-нитрильный каучук, содержащий относительно большое количество нитрильных групп, например СКН-40, обладает более высокой температурой стеклования и соответственно более низкой морозостойкостью по сравнению с каучуком СКН-18, имеющим меньшую концентрацию полярных нитрильных групп.[2, С.84]

При нагревании подвижность молекулярных цепей возрастает и релаксация напряжения значительно ускоряется (время релаксации сокращается). Релаксация напряжения наблюдается при[2, С.99]

Чем выше температура, тем больше интенсивность теплового молекулярного движения и тем больше подвижность молекулярных звеньев. Поэтому при повышенных температурах молекулярные звенья каучука быстрее принимают равновесное состояние и скорость релаксации возрастает. Подобным же образом можно объяснить эластичность каучука, обнаруживаемую при деформациях сжатия, сдвига, изгиба.[2, С.102]

Исследователи полагают, что диффузия в полипропилене имеет место в областях 'кристаллической фазы нарушенной структуры, или на границах раздела, где подвижность молекулярных цепей снижена по сравнению с подвижностью в аморфных областях3909.[12, С.305]

Густота пространственной сетки. В эластомерах прочность растет по мере увеличения густоты пространственной сетки. После достижения оптимальной густоты прочность начинает снижаться, потому что ограничивается подвижность молекулярных цепей, снижается их способность к ориентации при растяжении, а также увеличивается дефектность пространственной сетки в целом.[1, С.207]

Нагревание повышает пластичность каучука и резиновых смесей, и этим пользуются при осуществлении технологических процессов, но повышение температуры оказывает не всегда благоприятное влияние на пластикацию натурального каучука. При нагревании каучука повышается подвижность молекулярных звеньев, уменьшаются силы межмолекулярного взаимодействия, каучук становится менее вязким и более пластичным. При охлаждении каучук снова теряет свою пластичность, но при условии отсутствия сопутствующих нагреванию окислительных процессов, приводящих к необратимой деструкции. Таким образом, нагревание каучука вызывает появление временной пластичности, в значительной мере исчезающей при охлаждении каучука. Понижение вязкости и повышение пластичности каучука в этих условиях уменьшают вероятность механического разрыва молекул, так как при приложении к каучуку внешней растягивающей силы[2, С.235]

Представление о релаксационном механизме аномалии вязкости позволяет рассмотреть и влияние гидростатического давления на эффективную вязкость. Существующая интерпретация температурной зависимости вязкоупругих свойств сводится к учету влияния свободного объема на подвижность молекулярных цепей10. Повышение температуры, сопровождающееся уменьшением плотности, приводит к увеличению свободного объема, при этом облегчается перегруппировка молекул и, соответственно, уменьшается время релаксации. Понижение температуры сопровождается увеличением плотности и соответствующим уменьшением свободного объема.[5, С.54]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Белозеров Н.В. Технология резины, 1967, 660 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
5. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
6. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
7. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
12. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
13. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.

На главную