На главную

Статья по теме: Называется температурой

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Температура, при которой полимер при охлаждении переходит из высокоэластического или вязкотекучего состояния в стеклообразное, называется температурой стеклования. Полимеры в стеклообразном состоянии отличаются рядом особенностей релаксационного поведения и комплекса механических свойств от полимеров в высокоэластическом состоянии. Это становится очевидным при сравнении свойств натурального каучука (типичный эластомер) и поли-метилметакрилата, часто в обиходе называемого органическим стеклом.[4, С.142]

Предельная растворимость может быть достигнута изменением температуры раствора и состава растворителя. При изменении этих факторов полимер может и терять растворимость, что визуально проявляется в помутнении раствора. Температура, при которой становится возможным визуальное определение мутности, называется температурой осаждения, Т0.[1, С.91]

Деформационная способность полимерных материалов, обусловленная полностью обратимым изменением валентных углов и межатомных расстояний в полимерном субстрате под действием внешних сил, характерна для проявления упругих свойств. Температура, ниже которой полимерное тело может деформироваться под действием внешних сил как упругое, называется температурой хрупкости Гхр. Действие внешних силовых полей может быть представлено (рис. 3.3, а) как всестороннее сжатие, сдвиг и растяжение. Вместе с тем всякая конечная деформация полимерного материала проявляется, с одной стороны, как деформация объемного сжатия (или расширения), характеризующая изменение объема тела при сохранении его формы (дилатансия), а с другой, - как деформация сдвига, характеризующая изменение формы тела при изменении его объема (см. рис. 3.3, б). В связи с этим реологическое уравнение состояния должно описывать как эффекты, связанные с изменением объема деформируемого тела, так и влияние напряжений на изменение его формы. В общем случае деформация проявляется в двух видах: как обратимая и как необратимая. Энергия, затрачиваемая на необратимую деформацию, не регенерируется.[1, С.127]

При еще. более высоких температурах за время нагружения успевает произойти не только изменение формы макромолекул и отдельных их частей, но и заметное перемещение макромолекул как целого (их центров тяжести) относительно друг друга под действием внешней силы. В результате происходит развитие необратимой деформации полимера, т. е. его течение. Температура, при которой наряду с .обратимой высокоэластической становится значительной и необратимая деформация, называется температурой текучести.[2, С.141]

Высокоэластическая деформация, величина которой определяется изменением формы макромолекулярных клубков, мало зависит от температуры. По этой причине рост деформации под действием той же силы и за тот же промежуток времени, как определено выше, может быть обусловлен только развитием нового типа деформации— деформации вязкого течения. Этот вид деформации является результатом значительных смещений сегментов относительно положения равновесия, что приводит к перемещению молекулярных клубков относительно друг друга. Температура, при которой в полимере обнаруживается заметная деформация вязкого течения, приводящая к появлению изгиба на термомеханической кривой, называется температурой текучести. Выше температуры текучести полимер находится в вязкотекучем состоянии.[4, С.102]

Известно, что при деформировании полимеров в них развивается два вида деформации: обратимая эластическая и необратимая вязкая. Равновесный модуль полимера слабо зависит от температуры (см. гл. 8): он пропорционален абсолютной температуре. В то же время интенсивность теплового движения с ростом температуры сильно возрастает. Это в целом приводит к тому, что с ростом температуры доля необратимой деформации в общей величине деформации полимера непрерывно увеличивается. Пусть е=еэл + енеобр, где е — общая деформация, а еэл и енеовр—соответственно упругая и необратимая составляющие деформации. Температура, при которой в общей деформации начинает преобладать енеобр, называется температурой текучести. Этой температуре соответствует перегиб на термомеханической кривой, который показывает, что полимер перешел в вязкотекучее состояние (см. рис. 7.6).[4, С.156]

Температура, при которой необратимые деформации (деформации вязкого течения) начинают преобладать над эластической (обратимой) деформацией, называется температурой текучести 7V Она[4, С.168]

Окоэла тн н тн, повышает я При ка й-то мп рат\ре о» достигает пачения при котором прон х д т \ру кое >а рушение по имс а т е о с Эта т м терат ра называется температурой хрупкости Т При той тем рат>ре[8, С.285]

И наконец, когда при дальнейшем охлаждении вязкость становится очень большой, структура перестает изменяться. Температура, ниже которой структура жидкости перестает изменяться25, называется температурой стеклования — Гс. Ниже этой температуры изменение удельного объема происходит в малой степени, т.е. наблюдается более низкий коэффициент теплового расширения. Понижение удельного объема после стеклования при дальнейшем охлаждении протекает, так же как и в кристаллических телах, исключительно за счет уменьшения межмолекулярных расстояний. На графике изменения удельного объема жидкости от температуры обнаруживается перелом, соответствующий температуре стеклования Тс.[5, С.87]

По методу Мартенса образец в виде прутка укрепляется нижним концом в зажиме, а верхний нагружается. Образец нагревается с постоянной 'скоростью до тех пор, пока не появится заметный изгиб. Установленная таким образом температура размягчения называется температурой размягчения по Мартенсу.[11, С.88]

Переработка пластизолей в различные изделия происходит при нагревании с большой скоростью повышения температуры. При этом вязкость золя сначала снижается, затем, пройдя минимум, повышается до потери текучести. Температура, при которой золь теряет текучесть и превращается в гель, называется температурой желатинизации. При дальнейшем нагревании гель сначала становится хрупким, потом при повышении температуры его прочность постепенно повышается, а поверхность становится глянцевой. Температура, при которой прочность геля достигает определенного уровня, называется температурой плавления [68]. Снижение начальной вязкости пластизоля при повышении температуры соответствует уменьшению вязкости пластификатора (дисперсионной среды).[13, С.266]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
7. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
10. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
11. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
12. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
13. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
14. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
15. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
16. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
17. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную