На главную

Статья по теме: Поверхности электрода

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Молекулы деполяризатора могут достигать поверхности электрода не только вследствие диффузии, но и под влиянием электрического поля (миграционного тока). Для подавления миграционного тока к исследуемому раствору прибавляют индифферент-[1, С.234]

Кинетические токи должны быть пропорциональны площади поверхности электрода и константам скорости реакций, протекающих на КРЭ. Скорости этих реакций обычно зависят от рН, температуры, растворителя и буфера. Для данного капилляра кинетические токи непосредственно связаны с размером капель ртути и не зависят от высоты ртутного столба и скорости капания. При изменении давления на КРЭ обычно они изменяются в меньшей степени, чем диффузионные токи. Воспроизводимый кинетический ток, который пропорционален концентрации электроактивных частиц, наблюдается для многих органических соединений в хороших буферных растворах, например для восстанавливающихся кислот и их анионов или для веществ, способных к кето-енольной таутомерии. Кинетические и каталитические токи характеризуются значительно большими температурными коэффициентами, чем нормальные диффузионные токи, так как скорости реакций обычно сильнее зависят от температуры, чем диффузионные явления. В аналитической работе, когда ток полностью или частично определяется этими процессами, необходимо поддерживать постоянство температуры с точностью не менее 0,1°.[5, С.351]

Как отмечалось выше, электроактивные вещества достигают поверхности электрода в результате: 1) диффузии, обусловленной градиентом концентрации между поверхностью электрода и объемом раствора, и 2) электрической миграции заряженных частиц, обусловленной градиентом потенциала между электродом и раствором. Этот миграционный ток необходимо исключить или уменьшить насколько возможно добавлением большого избытка инертного электролита, который не участвует в реакции на электроде. Возникающий при этом предельный ток будет только диффузионным током. Для того чтобы можно было исключить миграционный ток, концентрация инертного электролита должна быть по крайней мере в 50 раз больше концентрации электроактивного вещества.[5, С.349]

До появления полярографической волны протекает лишь небольшой остаточный ток, а концентрация электроактивного вещества на поверхности электрода такая же, как и во всем растворе. Когда приложенное напряже-[5, С.344]

Подобные методы радикального инициирования обычно приводят к низким выходам полимера, так как радикалы вследствие наличия непарного электрона легко адсорбируются на электроде, не проникая в глубь раствора, где находится основная масса мономера; вместо этого они днмеризуются (рекомбннируют) на поверхности электрода:[4, С.91]

При идеальном диффузионном токе электроактивное вещество достигает электрода только в результате диффузии, обусловленной градиентом концентрации, возникающим вследствие убыли вещества на электроде. Этот градиент существует на протяжении диффузионного слоя, где концентрация меняется от практически нулевой на поверхности электрода до концентрации, существующей в объеме раствора. Диффузионный ток можно определить по высоте волны на кривой сила тока — напряжение.[5, С.347]

Точная причина появления этих максимумов неизвестна, хотя для их объяснения было предложено несколько теорий. Одна из теорий предполагает, что они являются результатом перемешивающего эффекта растущей капли ртути, а также разности потенциалов между ее верхом и дном. Однако, поскольку введением сильно адсорбируемых веществ удается подавить эти максимумы, можно думать, что они вызываются адсорбцией электроактивного вещества на поверхности электрода. Токи, определяемые адсорбцией, пропорциональны высоте ртутного столба. Природу и причины максимумов тока детально рассматривают Кольтгоф и Лингейн [146].[5, С.350]

Другое направление исходит из того очевидного положения, что в электролите на металлическом электроде всегда протекают электрохимические реакции. Следовательно, при анодном окислении восстановителя потенциал электрода сдвигается в отрицательную область, где должны протекать и катодные процессы электрохимического осаждения металла из его ионов. Таким образом, весь окислительно-восстановительный процесс химической металлизации протекает на металлической поверхности электрода путем сопряжения двух или более электрохимических реакций (рис. 7). Подобные же рассуждения приводят при объяснении процессов коррозии металлов, только при коррозии процесс идет в направлении растворения металла, а при химической металлизации — в направлении его осаждения.[3, С.32]

Проблема раздельного определения компонентов в одной системе, т.е. увеличение числа одновременно определяемых компонентов, является актуальной в целом для аналитической химии и для электрохимического анализа. Однако если в полярографии возможность раздельного измерения концентрации нескольких компонентов зависит от разницы их стандартных потенциалов, то в инверсионных методах, помимо этого условия, на аналитический сигнал значительное влияние оказывают [24] состояние поверхности электрода и природа материала, из которого он изготовлен, особенности процесса электролитического выделения компонентов и формирования ЭХК,[2, С.317]

Регистрируется полярограмма - кривая зависимости силы тока от потенциала индикаторного электрода, получаемая при электролизе исследуемого раствора (рис. 11.2). В начале кривой, пока не достигнут потенциал восстановления анализируемого иона, при увеличении потенциала практически не меняется сила тока, протекающего через ячейку. При достижении определенных значений потенциала индикаторного электрода наблюдаются скачкообразные изменения силы тока, называемые полярографическими волнами. Скачок тока соответствует восстановлению анализируемого иона на электроде. Однако очень быстро концентрация ионов в приэлектродном пространстве резко уменьшается, и дальнейший подвод ионов осуществляется за счет их диффузии из массы раствора к поверхности электрода. Устанавливается так называемый предельный ток, изображаемый на поля-рограмме в виде прямой, параллельной оси потенциалов.[2, С.312]

Поскольку отношение коэффициентов диффузии окислителя и восстановителя очень близко к единице, потенциал полуволны обратимой реакции очень тесно связан со стандартным потенциалом соответствующей реакции. Потенциал полуволны независимо от того, измерен ли он по катодной, по анодной волне или по волне, которая является частично катодной, а частично анодной, после введения поправки на ^должен быть равен нормальному электродному потенциалу реагирующей системы. Если вещество вначале полярографируют в окисленной форме, а затем в восстановленной и получают идентичные потенциалы полуволны, которые соответствуют нормальному потенциалу той же системы, определенному потенциометр ически, то это служит очень хорошим критерием обратимости данной системы. Потенциалы полуволны не зависят от концентрации электроактивного вещества, так как в точке полуволны отношение концентраций окисленной и восстановленной форм на поверхности электрода имеет одно и то же постоянное значение. Это значение близко к единице независимо от концентраций в объеме раствора. Поскольку потенциалы разложения зависят от концентрации, в сводках полярографических окислительных и вое-[5, С.345]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
2. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
3. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
4. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
5. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
6. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
7. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную