На главную

Статья по теме: Просвечивающей электронной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Не следует также забывать, что с помощью просвечивающей электронной микроскопии обычно измеряется усредненный размер зерен в плоскости, совпадающей с поверхностью образца. Рент-геноструктурньп анализ дает усредненный по поверхности или объему размер зерен-кристаллитов, измеренный в направлении, перпендикулярном поверхности образца. Рентгеноструктурный анализ дает усредненный по поверхности или объему размер зерен-кристаллитов, измеренный в направлении, перпендикулярном поверхности образца.[1, С.72]

Рис. 2*. Полученное методом высокоразрешающей просвечивающей электронной микроскопии изображение границы зерна в наноструктурном сплаве Al-3 %Mg, иллюстрирующее влияние облучения высокоэнергетичными электронами: a — до облучения; б — через несколько минут после облучения [60][1, С.69]

Прямые наблюдения границ зерен, выполненные методом высокоразрешающей просвечивающей электронной микроскопии, дают доказательства их специфической дефектной структуры в наноструктурных материалах вследствие присутствия атомных ступенек и фасеток, а также зернограничных дислокаций. В свою очередь, высокие напряжения и искажения кристаллической решетки ведут к дилатациям решетки, проявляющимся в изменении межатомных расстояний, появлении значительных статических и динамических атомных смещений, которые экспериментально наблюдались в рентгеновских и мессбауэрографических исследованиях.[1, С.86]

Отметим, что близкие результаты, указывающие на значительные упругие деформации в приграничных областях, были получены недавно в работе [119], где наблюдали и измеряли методом просвечивающей электронной микроскопии кривизну кристаллической решетки вблизи границ зерен, а также переменную разори-ентацию вдоль индивидуальных границ в Ni, подвергнутом ИПД. В этой работе, используя изгибные контуры экстинкции, исследовали «структурную» кривизну решетки, которая является кривизной кристаллографических плоскостей, параллельных волновому вектору, в отличие от обычной «изгибной» кривизны, относящейся к плоскостям, перпендикулярным волновому вектору. Вследствие этого «структурная» кривизна отражает реальную структуру объемных образцов, поскольку плоскости, параллельные волновому вектору, практически не меняют свою кривизну при возможном изгибе фольги при ее приготовлении.[1, С.65]

Неравновесные границы зерен в наноструктурных материалах вследствие наличия в их структуре внесенных дефектов с предельно высокой плотностью обладают избыточной энергией и дальнодействующими упругими напряжениями. В результате действия этих напряжений вблизи границ зерен возникают значительные искажения и дилатаций кристаллической решетки, которые экспериментально обнаруживаются методами просвечивающей электронной микроскопии и рентгеноструктурного анализа. В свою очередь атомные смещения в приграничных областях изменяют динамику колебаний решетки и, как результат, приводят к изменению таких фундаментальных свойств, как упругие модули, температуры Дебая и Кюри и др.[1, С.99]

В работе [69] методом РСА исследовано влияние степени ИПД кручением на формирование твердого раствора в несмешиваемых системах Fe-Cu и Fe-Bi при консолидации интенсивной деформацией порошков Fe, Си и Bi. Исследование фазового состояния и параметров решетки позволило установить, что при степенях ИПД вплоть до 6,4 в сплаве Fe-20 ат. %Си формируется смесь двух неравновесных неоднородных твердых растворов на основе ОЦК Fe и ГЦК Си. Методом просвечивающей электронной микроскопии установлено, что распределение зерен по размерам носит бимодальный характер с максимумами, соответствующими 15 нм и 40 нм. Увеличение степени ИПД до значения 7,2 в данном сплаве привело к формированию пересыщенного неоднородного твердого раствора Си в Fe с одномодальным распределением зерен по размерам. Средний размер зерен составил 10 нм.[1, С.49]

Полученные методом просвечивающей электронной микроскопии фотографии наноструктурного сплава А1 1420 приведены на[1, С.207]

К числу недостатков просвечивающей электронной микроскопии следует отнести сложность приготовления образцов и возможность ошибок ("артефактов") в определении структуры.[2, С.356]

При исследовании морфологии технического углерода методом просвечивающей электронной микроскопии с автоматическим анализом изображения расчёт числа агрегатов на единицу объёма резины производят [29] по формуле[2, С.473]

Распределение различных наполнителей и добавок изучают традиционными методами трансмиссионной и сканирующей электронной микроскопии [15]. Основной проблемой, однако, остается изучение распределения оксидных наполнителей или типа и местонахождения органических добавок. Эта проблема может быть решена путем использования элементоотражающей спектроскопической просвечивающей электронной микроскопии (ЭОС-ПЭМ). В этом случае нет необходимости в специальной подготовке образцов, поскольку фазы идентифицируются путем обнаружения характерных для них элементов. Метод ЭОС-ПЭМ успешно использован для всестороннего анализа наполнителей и аддитивов в каучуковых системах и для выявления жестких доменов в сегментированных полиуретанах [16].[2, С.467]

ДЛЯ ПРОСВЕЧИВАЮЩЕЙ ЭЛЕКТРОННОЙ МИКРОСКОПИИ[3, С.103]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
2. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
3. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
4. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
5. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
6. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
7. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную