На главную

Статья по теме: Разнообразных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Из разнообразных полимеров, элементарные звенья которых соответствуют строению галоидопроизводных углеводородов алифатического ряда, наибольшее внимание заслуживают насыщен-[1, С.251]

Для большого числа разнообразных полимеров Т8 приведены в The Polymer Handbook [О: 897] и других справочных изданиях [О: 818, 1121, 1459].[5, С.152]

Что касается температурного коэффициента механодеструкции полимеров, находящихся в стеклообразном состоянии, то данные рис. 69 свидетельствуют о его незначительной величине для самых разнообразных полимеров. Но и здесь имеются некоторые особенности, связанные с их химической природой. Так, для желатина температурная зависимость существенна при низких температурах (от —10 до •—70 °С). Это можно объяснить тем, что желатин, хотя остается в стеклообразном состоянии во всем интервале температур, все же при низких температурах, порядка —70 °С, претерпевает значительное изменение механических свойств.[6, С.109]

Согласно теории Флори, при температуре, при которой молекулы имеют невозмущенную конфигурацию, а = 1 и характеристическая вязкость строго пропорциональна М1/2. Это было экспериментально установлено для самых разнообразных полимеров. Поэтому можно считать, что изменение [т]] в зависимости от температуры Т и растворителя обусловлено факторами, воздействующими на а. Величина фактора растяжения связана с термодинамическими параметрами AS* (парциальная мольная энтропия разбавления) и АЯ( (парциальная мольная теплота разбавления) следующим соотношением [64]:[7, С.20]

Поликонденсация успешно применяется для синтеза разнообразных полимеров[2, С.193]

Поливинилацетали можно получать как полимераналогичным превращением поливинилового спирта, так и непосредственной полимеризацией ненасыщенных ацеталей. В обоих случаях можно синтезировать бесконечное количество видов разнообразных полимеров, выбирая соответствующие альдегиды и меняя режимы полимераналогичного превращения или условия полимеризации.[1, С.288]

Эффективность фотораспада диазида I в полимерах обычно выше, чем в растворах. Высокий квантовый выход фотолиза в полимерной матрице циклополиизопрена, составляющий 0,11—0,38 [10], 0,43 [25] (в зависимости от длины волны возбуждающего света), а также ряд других практически ценных свойств диазида объясняют использование его с 1960 г. [4] и до настоящего времени для фотоструктурирования самых разнообразных полимеров [34]. Структурные изменения в молекуле заметно влияют как на квантовый выход фоторазложения, так и на реакционную способность нитренов в полимере, что продемонстрировано на примере структурирования циклополиизопрена.[3, С.139]

В табл. 17.1 приведены примеры колебательного анализа спектроскопии КР для разнообразных полимеров.[4, С.294]

Блок-сополимеры, используемые в качестве покрытий и адгезивов, синтезируют из разнообразных полимеров, содержащих альдегидные группы, методом поликонденсации с эпоксидными смолами. Так, в результате взаимодействия метилольных групп, содержащихся в фенолформальде-гидной, мочевинформальдегидной и меламинформальдегидной смолах, с гидроксильными и эпоксигруппами эпоксидной смолы образуются блок-сополимеры, характеризующиеся высокой степенью поперечного сшивания и высокой термостойкостью.[8, С.309]

В. с. выпускают в виде моноволокон, текстильных или технич. нитей и штапельного волокна. Прочность В. с. может достигать 1,2 Гн/м2 (120 кгс/мм2), высоко-эластич. деформация составляет от 2 до 1000%. Текстильные и физико-химич. показатели В. с. гораздо разнообразнее, чем у волокон искусственных. Производство В. с. развивается быстрее производства искусственных волокон, что объясняется доступностью исходного сырья, быстрым развитием производства разнообразных полимеров и, особенно, разнообразием свойств и высоким качеством В. с. В 1970 мировое производство В. с. составило ок. 4900 тыс. т, в СССР — ок. 160 тыс. т', причем в СССР ок. 80% всех В. с. вырабатывают из полиамидов. В ближайшие годы намечается быстрое развитие в нашей стране производства полиэфирных и полиакрилонитрильных волокон.[10, С.249]

В. с. выпускают в виде моноволокон, текстильных или технич. нитей и штапельного волокна. Прочность В. с. может достигать 1,2 Гн/м'2 (120 кгс/мм'*), высоко-эластич. деформация составляет от 2 до 1000%. Текстильные и физико-химич. показатели В. с. гораздо разнообразнее, чем у волокон искусственных. Производство В. с. развивается быстрее производства искусственных волокон, что объясняется доступностью исходного сырья, быстрым развитием производства разнообразных полимеров и, особенно, разнообразием свойств и высоким качеством В. с. В 1970 мировое производство В. с. составило ок. 4900 тыс. т, в СССР — ок. 160 тыс. т; причем в СССР ок. 80% всех В. с. вырабатывают из полиамидов. В ближайшие годы намечается быстрое развитие в нашей стране производства полиэфирных и полиакрилонитрильных волокон.[9, С.252]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
3. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
4. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
6. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
7. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
8. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
12. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
13. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную