На главную

Статья по теме: Уменьшение прочности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Механизм нагружения, который не рассматривается в данной монографии, представляет собой деформирование цепных молекул под действием силы инерции, т. е. через распространяющиеся волны напряжения. Хрупкие термопластичные материалы (ПС, сополимер стирола с акрилонитрилом, ПММА) при скоростях одноосной деформации менее 3 м/с или скоростях деформирования менее 50 с~' ведут себя «классически» [30]. В данной области при увеличении скорости деформирования увеличиваются прочностные свойства и уменьшается удлинение. При скоростях деформирования 50—66 с-1 происходит переход к разрушению, вызванному волной напряжения, которая сопровождается десятикратным уменьшением кажущейся работоспособности материала [30]. Скелтон и др. [40] изучили полимеры ПА-6, ПЭТФ и ароматический полиамид (Номекс). Данные волокна также ведут себя классически при температурах окружающей среды и в интервале значений скоростей нагружения 0,01 —140 с-1'. При температурах —67 и —196°С получено уменьшение прочности, начиная со скорости нагружения 30 с~'.[1, С.146]

Каган и др. [121] изучали влияние надмолекулярной организации на прочность ПЭВП, зависящую от времени. Они получили хорошее соответствие между 1-часовой (пластической) прочностью при ползучести и прочностью при вынужденной эластичности материалов с различной кристалличностью, плотностью (0,945<р<0,960 г/см3), размером кристаллитов и диаметром сферолитов. Эти параметры едва ли влияли на активационный объем у и лишь немного на энергию активации процесса пластического деформирования (параллельное смещение пластической ветви кривой а—lg(^o))- В то же время при увеличении плотности и размера кристаллитов и при уменьшении диаметра сферолитов они выявили явную тенденцию к увеличению долговременной прочности при хрупком разрушении (сопротивления образованию трещин при ползучести). Гаубе и др. [117] также сообщают, что с увеличением кристалличности (т. е. плотности) ПЭ, ПП, ПЭТФ, ПОМ, ПА возрастает прочность при вынужденной эластичности (при более низких значениях деформации) и прочность при пластическом деформировании. Однако они указывают, что уменьшение прочности при хрупком разрушении в области крутой части зависимости происходит тем скорее, чем выше кристалличность и меньше молекулярная масса. В полиэтилене с очень высокой молекулярной массой совсем не образуются трещины при ползучести. Судя по этим наблюдениям, процесс образования трещин при ползучести, по-видимому, связан с постепенным распутыванием цепей и раскрытием пустот в межкристаллических и (или) межсферолитных областях. Оба механизма совершенно не должны зависеть от деформации ползучести. Факт, что трещины при ползучести обычно регистрируются лишь в течение очень короткого промежутка времени, до того как они вызовут окончательное ослабление, свидетельствует о том, что эти трещины, раз уж они образовались, растут со значительными скоростями.[1, С.286]

Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацией различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных зфиров и полиамидов. В результате реакций совместной поли-этерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные ди-олы или диамины, изменяется концентрация полярных групп или регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп затрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, но вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастающим количеством АГ-соли (соль гексаметилендиамина и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами-[2, С.532]

Необратимое уменьшение прочности полиэфирного волокна при выдерживании его в течение 30 недель в условиях высоких температур показано на рис. 9.6. Скорость изменения прочности заметно уменьшается с течением. продолжительности воздействия.[3, С.252]

При нагревании полиамида в присутствии кислорода воздуха происходит постепенное уменьшение прочности полимера. Особенно резко уменьшается прочность полимера при температуре выше 100° (рис. 117). Малую термическую стойкость полиамидов можно объяснить легкостью окисления амидных групп, окисление сопровождается разрывом полимерных цепей. На рис. 118[2, С.452]

В каждом случае эксплуатации полиэфирного волокна в условиях повышенных температур необходимо учитывать относительную влажность воздуха, так как в некоторых случаях уменьшение прочности при высокой температуре обусловлено не термодеструкцией, а гидролизом эфирных связей.[3, С.252]

При добавлении фосфорных кислот или их эфиров термостойкость волокна не повышается сверх его обычной рекомендуемой рабочей температуры эксплуатации (170 °С), что видно из рис. 4.27 [121]. Небольшой прирост термостойкости волокна и длительности его работоспособности в условиях нагрева могут обеспечить термостабилизаторы, ингибирующие распад по радикальному механизму. На теплостойкость волокна (прочность при данной температуре) термостабилйзаторы никакого влияния оказать не могут, поскольку обратимое уменьшение прочности при нагреве связано со структурными факторами, а не с термическим распадом.[3, С.95]

Таблица 9.6. Уменьшение прочности полиэфирного волокна в течение недели (168 ч) во влажной среде[3, С.260]

Данные таблицы 2.15 свидетельствуют, что наблюдается рост адгезионной прочности между собой отдельных деталей покрышки. Исключение составляют только слои каркаса. Однако уменьшение прочности связи между слоями каркаса составило всего 5%, что находится на уровне ошибки в определении данного показателя.[8, С.40]

В дальнейшем43» 44>85 было показано, что принципиально новый и весьма широкий круг разнообразных физико-химических явлений обнаруживается при взаимодействии твердых тел с сильно адсорбционно-активными средами. По отношению к металлам такими средами служат расплавы некоторых других, более легкоплавких металлов. Было установлено, что при очень сильном понижении свободной поверхностной энергии возможны следующие эффекты: 1) появление хрупкости и уменьшение прочности, вплоть до полной потери металлом прочности и пластичности (в пределе—до самопроизвольного диспергирования на блоки коллоидных размеров), либо 2) облегчение деформации.[10, С.39]

Резкое уменьшение прочности резин из кристаллизующихся каучуков вблизи 100 СС объясняется плавлением кристаллической фазы.[10, С.197]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
4. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
5. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
6. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
7. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
8. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
9. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
10. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
11. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
12. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
15. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
16. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
17. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
18. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
21. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
22. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
23. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
24. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
25. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
26. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
27. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
28. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
29. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
30. Гастров Г.N. Конструирование литьевых форм в 130 примерах, 2006, 333 с.
31. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
32. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
33. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
34. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
35. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
36. Седлис В.И. Эфиры целлюлозы и пластические массы, 1958, 116 с.

На главную