На главную

Статья по теме: Адгезионной прочности

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Изменение адгезионной прочности покрытий на основе ХСПЗ, отвержденных аминоэпоксидным аддуктом ФГМ, при выдержке в серной кислоте различных концентраций при 60 °С показывает значительно большую их эффективность в сравнении с покрытиями, отвержденными n-фенилендиамином (рис. 3.3). Покрытия имеют значительно лучшую исходную адгезию к подложке, а ее снижение в растворах кислоты намного меньше [35].[6, С.169]

Увеличения адгезионной прочности между покрытием и подложкой можно добиться также применением грунтовочных покрытий. Наиболее эффективными грунтами под ХСПЭ оказались аллопреновый и каучукофенольный [49, 50].[6, С.174]

Определение адгезионной прочности покрытий методом срезания. Конструктивная схема прибора для срезания покрытия с подложки приведена на рис. 7.4. Пластинку-подложку 1 с покрытием 2 закрепляют в салазках 8, которые могут совершать возвратно-поступательное перемещение с помощью электромотора через редуктор по направляющим 4. Нож-резец 5 закрепляют в кронштейн 6, который может перемещаться в вертикальной плоскости. Усилие срезания покрытия фиксируют динамометром 7 с датчиком 8 и записывают самописцем 9. За меру адгезии принимают срезающее усилие Р (кг/см).[2, С.141]

Определение адгезионной прочности методом отслаивания покрытия от подложки. Сущность метода заключается в следующем (рис. 7.5). Покрытие 1 отслаивают у края и отрывают от подложки 2 под углом 90 или 180 °. Для испытания адгезии по методу отслаива-[2, С.141]

Степень снижения адгезионной прочности под действием лаги зависит как от молекулярной массы исходной эпоксид-ой смолы, так и от строения отвердителя. Так, адгезионная рочность покрытий, отвержденных ГМДИ, изменяется меньше, ем прочность покрытий, отвержденных ДГУ. По-видимому, это вязано с меньшим водопоглощением первых покрытий благо-аря более низкой полярности.[8, С.195]

Адгезионная прочность покрытий. Все методы определения адгезионной прочности полимерных покрытий основаны на механическом разрушении взаимодействия полимер-подложка. Известно несколько десятков различных методов. Универсального метода определения адгезии полимеров и полимерных покрытий пока не существует. В зависимости от задачи и объектов исследования выбирают различные методы определения адгезии. Наиболее часто используют следующие методы определения адгезионной прочности: нормального отрыва (метод грибков), штифтов, срезания покрытия резцом, отслаивания покрытия от подложки, отслаивания проволочки от полимера, метод газового или жидкостного пузыря.[2, С.139]

Рис. 3.3. Изменение адгезионной прочности покрытий на основе ХСПЭ, отвержденных аддуктом фенилглици-дилового эфира и л-фенилендиамина[6, С.169]

Изучение зависимости адгезионной прочности (работы отрыва) Ad (хирургического пластыря от стекла) от скорости отрыва [386] показало, что все результаты описываются кривой типа параболы. Кривая Ad — f (v) выходит из начала координат. Значение Ad возрастает с увеличением v сначала быстро, а затем медленнее и при значениях v > 10~4 м/с практически не изменяется с ростом V.[12, С.130]

Для достижения высокой адгезионной прочности необходимо, чтобы YC ^ Т* (гДе YC — поверхностное натяжение субстрата). Поверхностное натяжение эпоксидных клеев (35 — 40 МДж/м2) ниже поверхностного натяжения большинства металлов и зависит от строения исходных олигомеров, их функциональности, состава клеев. В табл. 5.2 приведены данные о прочности при гдвиге алюминиевых пластин, склеенных композициями на основе сложных ДГЭ изомеров фталевой кислоты, а также низкомолекулярной диановой смолы при 100 °С в течение 2ч [18]. В области низких температур клеящие составы на основе сложных ДГЭ образуют соединения значительно с более высокой прочностью при сдвиге, чем клеи на основе простого ДГЭ. При повышенных температурах прочность всех клеевых соединений снижается, однако в этом случае наблюдается преимущество сложных эфиров ДГЭ, особенно мета- и пара-изомеров. Считают, что это обусловлено более интенсивным межмолекулярным взаимодействием цепей с полярными сложноэфирными группами. Значение полярных взаимодействий было показано на примере соединений меди: лишь амины с двумя активными атомами водорода в молекуле эффективно способствовали увеличению адгезии эпоксидной смолы и предотвращали уменьшение адгезионной прочности при кипячении соединений в воде [19].[8, С.107]

В качестве количественной меры адгезионной прочности покрытий на металле в большинстве случаев используют, согласно ГОСТ 15140—78, усилие, необходимое для отслаивания от пленки гибкой металлической пластины.[8, С.192]

Данные таблицы 2.15 свидетельствуют, что наблюдается рост адгезионной прочности между собой отдельных деталей покрышки. Исключение составляют только слои каркаса. Однако уменьшение прочности связи между слоями каркаса составило всего 5%, что находится на уровне ошибки в определении данного показателя.[7, С.40]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
6. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
7. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
11. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
14. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
15. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
16. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
17. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
21. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
22. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную