На главную

Статья по теме: Аммониевые основания

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Четвертичные аммониевые основания (водные растворы, содержащие 2,5 - 3,0 моль/дм3):[1, С.292]

Полимерные четвертичные аммониевые основания образуются при действии на поливинилсульфонат третичным амином. Процесс сопровождается одновременным частичным дегидратированием полимера, вследствие чего образуются внутримолекулярные циклические эфирные группы типа тетрагидропирана:[2, С.300]

Поливиниламин и полибутиленамин можно превратить в чет-аммониевые основания действием на полимер йодистого метила или диметилсульфата:[2, С.390]

Хлорметилирование сополимеров стирола можно проводить и методом Блана*. По этому методу реакцию проводят в среде дихлорэтана. К набухшему полимеру добавляют параформ и хлористый цинк и пропускают в смесь хлористый водород. Таким путем можно достигнуть 65—85%-ного замещения в течение 14—15 час. Степень замещения зависит от набухаемости сополимера. Замещение атомов хлора аминогруппами можно проводить действием различных третичных аминов. Образующиеся нерастворимые четвертичные аммониевые основания применяют в качестве анионитовых фильтров для извлечения анионов из растворов слабых кислот или солей.[2, С.528]

Катализаторами этого процесса служат феноляты или четвертичные аммониевые основания.[2, С.416]

Для получения П. высокой мол. массы в качестве катализаторов м. б. использованы третичные амины или четвертичные аммониевые основания способные претерпевать перегруппировку Стпвенса и превращаться в третичные амипы, а также четвертичные фос-фониевые, арсониевые и третичные сульфонневые соединения. Оптимальное количество катализатора определяется реакционной способностью исходных диокси-соединений (напр., 2—3% от количестве исходного бисфенола).[8, С.422]

Поверхностно-активные вещества подразделяются на три класса: анионоактивные (жирные кислоты, сульфированные масла и др.), катионоактивные (четвертичные аммониевые основания и др.) и неионогенные. Анионоактивные вещества могут быть использованы в щелочной или нейтральной средах, катионоактивные—в кислой или нейтральной средах, неиногенные вещества можно применять во всех средах.[4, С.113]

Привитой сополимер полиэтилена и винилпиридина сохраняет прочность, эластичность и нерастворимость в воде, присущую полиэтиленовым пленкам. Присутствие боковых ответвлений поли-винилпиридина придает сополимеру способность к набуханию в воде и свойства полиэлектролитов. Эти свойства можно усилить, превращая слабоосновные пиридиновые звенья привитого сополимера в четвертичные аммониевые основания:[2, С.555]

Для полного использования изохинолин-хинальдиновой фракции изучалась возможность применения остальных составляющих фракции — хинолина и изохинолина — как сырья для синтеза ионообменных смол. Отгоны оснований, не вступивших в реакцию с формальдегидом при получении 2-хинолилпропандиола, представляют собой главным образом смесь хинолина и изохинолина. Учитывая основной характер гетероциклического азота и его способность образовывать четвертичные аммониевые основания под действием алкилирующих агентов, мы проводили синтез смолы по следующей схеме:[7, С.242]

Выпускаемые промышленностью полимеры являются диэлектриками. При изготовлении и эксплуатации изделий из полимеров на их поверхности возникают и накапливаются электрические заряды. Для предотвращения этого явления используются два основных приема. Первый — в полимер вводятся различные антистатические поверхностно-активные вещества, уменьшающие поверхностное сопротивление. Такие вещества в своем химическом строении имеют кратные связи (четвертичные аммониевые основания, амины и др.). Содержание вводимых антистатиков, как правило, не превышает 2 %.[6, С.28]

Любой процесс, связанный с передачей электронов, т. е. с протеканием тока, вызывает уменьшение поляризации электродов, т. е. деполяризацию электрода. Вещества, вызывающие эти процессы, называются деполяризаторами. Чтобы анализируемый раствор имел достаточную электропроводность, необходимо присутствие фонового электролита в концентрации не менее 0,05— 0,1 моль/л, индифферентного по отношению к определяемому веществу. Обычно применяют электролиты с возможно более высоким потенциалом деполяризации, чтобы их разряд не на* кладывался на окисление (восстановление) составных частей раствора. К таким электролитам относятся, например, хлориды, хлораты, перхлораты, сульфаты, гидрооксиды лития, калия и аммония, четвертичные аммониевые основания и соли. Наличие электролита с концентрацией, значительно превышающей содержание анализируемого вещества, обусловливает образование истинного диффузионного тока и четко выраженной волны с площадкой предельного тока. При недостатке или отсутствии электролита ионы деполяризатора движутся не только благодаря диффузии, вызванной уменьшением концентрации деполяризатора вблизи электрода, но и под действием электрического поля. В этом случае как форма волны, так и зависимость тока от концентрации получаются сложными, что затрудняет интерпретацию кривых. При недостатке электролита могут образоваться максимумы на полярограммах. Для устранения максимумов применяются поверхностно-активные вещества, например желатин, агар-агар, крахмал, метилцеллюлоза, некоторые красители.[3, С.20]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
4. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
5. Серков А.Т. Вискозные волокна, 1980, 295 с.
6. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
7. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
11. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
16. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
17. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
18. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную