На главную

Статья по теме: Действием флуктуации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Постепенное разрушение под действием флуктуации тепловой энергии могут претерпевать не только химические связи, но и связи межмолекулярные (раздвижка сегментов). В результате также может образоваться дефект, дающий начало роста трещины.[2, С.202]

Выражение (V.5) показывает зависимость вероятности перескока сегментов под действием флуктуации тепловой энергии от температуры. Если число сегментов в макромолекуле не меняется с температурой, т. е. макромолекула не становится существенно более гибкой при нагревании, то закономерности, определяющие вероятность перескока, определяют и закономерности вязкости. Поэтому по аналогии с (V.5) напишем:[4, С.134]

Выражение (V.5) показывает зависимость вероятности перескока сегментов под действием флуктуации тепловой энергии от температуры. Если число сегментов в макромолекуле не меняется с температурой, т. е. макромолекула не становится существенно более гибкой при нагревании, то закономерности, определяющие вероятность перескока, определяют и закономерности вязкости. Поэтому по аналогии с (V.5) напишем:[5, С.134]

Выражение (11.5) показывает зависимость вероятности перескока сегментов под действием флуктуации тепловой энергии от температуры. Если число сегментов в макромолекуле не меняется с температурой, т. е. макромолекула не становится существенно оолее гибкой при нагревании, то закономерности, определяющие вероятность перескока, определяют и закономерности вязкости. Поэтому по аналогии с (11.5) запишем:[2, С.166]

Согласно теории Я. И. Френкеля и Г. Эйринга течение жидкостей осуществляется перескоком отдельных молекул в соседнее положение, если оно свободно. Перескоки эти происходят в жидкости всегда и в отсутствие течения просто под действием флуктуации тепловой энергии. Течение же возникает тогда, когда на жидкость действует некоторое напряжение т, как это показано на рис.[5, С.130]

Согласно теории Я. И. Френкеля и Г. Эйринга течение жидкостей осуществляется перемещением (перескоком) отдельных молекул в соседнее положение, если оно свободно. Перескоки эти происходят в жидкости всегда и в отсутствие течения просто под действием флуктуации тепловой энергии. Течение же возникает тогда, когда на жидкость действует напряжение сдвига, как это[2, С.161]

Б лилимере, молекулярно-массовое распределение которого MlvjMn = \,2, различия в молекулярных массах и размерах клубков значительны. Чем больше молекулярная масса, тем легче деформировать клубок, тем большую долю в общей деформации составляет ее высокоэластическая составляющая. При достижении определенной скорости деформации, когда величина эластической деформации расплава еще невелика, большие молекулярные клубки (большая молекулярная масса) могут уже достичь критической шеличины деформации. При этом сегменты большого клубка теряют способность перемещаться под действием флуктуации тепловой энергии. Весь клубок перемещается как целое в массе более низкомолекулярных (коротких) макромолекул. Затраты на внутреннее трение в такой как бы застекловавшейся молекуле снижаются, что приводит к общему снижению вязкости системы.[4, С.133]

В полимере, молекулярно-массовое распределение которого 'Mw/'Mn = 1,2, различия в молекулярных массах и размерах клубков значительны. Чем больше молекулярная масса, тем легче деформировать -клубок, тем большую долю в общей деформации составляет ее высокоэластичаская составляющая. При достижении определенной скорости деформации, когда величина эластической деформации расплава еще невелика, большие молекулярные клубки (большая молекулярная масса) могут уже достичь критической величины деформации. При этом сегменты большого клубка теряют .способность перемещаться под действием флуктуации тепловой энергии. Весь клубок перемещается как целое в массе более низкомолекулярных (коротких) макромолекул. Затраты на внутреннее трение в такой как бы застекловавшейся молекуле снижаются, что приводит к общему снижению вязкости системы.[5, С.133]

Термофлуктуационный 'механизм является наиболее общим механизмом разрушения твердых тел, так как связан с фундаментальным явлением природы — тепловым движением. В наиболее чистом виде он реализуется при хрупком разрушении, а при других видах разрушения ему сопутствуют релаксационные процессы, которые по мере увеличения температуры играют все большую роль. При хрупком разрушении (ниже температуры хрупкости Т'хр) очагами разрушения обычно являются микротрещины, причем долговечность определяется ростом наиболее опасной микротрещины, которая в своем развитии переходит в магистральную трещину, приводящую к разрыву образца. Разрыв напряженных химических связей происходит под действием флуктуации, возникающих при неупругом рассеянии фононов относительно высокой энергии. Растягивающее напряжение увеличивает вероятность разрыва связей.[1, С.294]

Силовое возмущение межатомных связей в нагруженном полимере проявляется в изменении спектра поглощения в ИК-области, где лежат частоты колебаний связей в полимерных цепях. Полосы ИК-поглошения под действием напряжения смещаются в сторону низких частот и деформируются, размываясь в ту же сторону. Разгрузка полимера приводит к восстановлению исходного вида полос поглощения. Растяжение межатомных связей вызывает уменьшение энергии связи, и как следствие этого, некоторое уменьшение частоты колебаний. Большая часть связей (80—90%) нагружается сравнительно слабо, о чем свидетельствует небольшое смещение полосы поглощения. Малая часть связей нагружается значительно сильнее. Максимальные перенапряжения наиболее нагруженных связей (несколько процентов) достигают значений порядка десятков (р0—10). Наличие таких перенапряженных связей играет решающую роль в разрушении полимера, так как вначале именно они будут разрываться под действием флуктуации, что приводит к появлению зародышей разрушения.[1, С.324]

Согласно современным представлениям, все твердые полимерные тела существенно неоднородны на различных уровнях их организации — молекулярном, топологическом, надмолекулярном. Здесь мы: будем понимать под неоднородностями структуры такие отклонения в флуктуации плотности или в размерах упорядоченных областей, которые превышают статистические, термодинамические флуктуации при данных условиях. Имеются и другого типа неоднородности структуры, которые мы будем называть технологическими дефектами (пузырьки, поверхностные трещины и т. п.), которые обычно связаны с технологией получения полимерного образца. Действуя на неоднородный материал, поле напряжений становится также неоднородным и создает концентрацию напряжений в окрестности любого дефекта, что в конечном счете приводит к локальным пластическим деформациям и разрывам атомных связей, причем в первую очередь рвутся наиболее напряженные связи. Разрыв связи происходит под действием флуктуации энергии теплового движения, а действующее механическое напряжение уменьшает потенциальный барьер, который необходимо преодолеть для разъединения атомов [81—85]. Накопление достаточного количества разрывов приводит к образованию субмикроскопических трещин (до нескольких сот ангстрем в направлении растягивающей силы и тысяч ангстрем в направлении, перпендикулярном направлению действующей силы). Длина субмикроскопических трещин обычно совпадает с размерами надмолекулярных образований полимера [95].[3, С.218]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
4. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
5. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную