На главную

Статья по теме: Каландруемого материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Работа толщиномеров емкостного типа основана на том, что лента каландруемого материала, пропускаемая между двумя изолированными электродами, образует конденсатор, емкость которого изменяется в зависимости от толщины слоя диэлектрика. Эти изменения емкости определяются компенсационным методом и позволяют судить о толщине каландруемого материала с точностью + (10 — 20) мкм1.[3, С.381]

Измерение толщины каландруемого листа можно осуществлять контактным и бесконтактным методами. При контактном методе лента каландруемого материала проходит между опорными роликами механического или электрического толщиномера, работающего обычно в режиме «советчика». Применение индуктивного датчика позволяет выносить вторичный прибор на щит управления, а также производить непрерывную регистрацию толщины каландруемого материала. Обычно точность измерения контактных толщиномеров составляет + (10 — 25) мкм. Бесконтактные толщиномеры подразделяются на пневматические, емкостные и радиоизотопные.[3, С.381]

Современные каландры наиболее совершенной конструкции снабжены системами обратной связи, соединяющими толщиномер с механизмом регулирования зазора между валками, обеспечивающими автоматическую корректировку величины зазора, необходимую для поддержания заданной толщины каландруемого материала.[3, С.381]

Теоретический анализ течения вязких неньютоновских жидкостей между валками был сделан Мак-Келви, а также Бекиным и Красовским с сотр. [1—4]. Эти авторы рассчитали (или составили расчетные номограммы и алгоритмы) профили скоростей и поля давлений в зависимости от реологических свойств каландруемого материала, геометрии и кинематики каландрования.[2, С.223]

Основной реологический процесс, протекающий при каландро-вании вязких или аномально вязких (термопластичных) материалов,— ламинарное вязкое течение При введении некоторых упрощений в систему уравнений, описывающих модель, оказывается возможным провести математический (гидродинамический) анализ процесса. Такой анализ, если, бы он был полным, позволил бы, исходя из реологических свойств каландруемого материала, геометрии зоны контакта (радиуса валков и величины зазора) и скорости каландрования, рассчитать производительность, толщину получаемого листа, распределение,температур, распорные усилия, вращающий момент и мощность привода.[2, С.224]

В межвалковом зазоре каландра резиновая смесь подвергается интенсивной термомеханической обработке, которая существенно влияет на качество получаемых заготовок и характер самого процесса каландрования [16]. Эти вопросы оценки влияния тепловыделений при вязком деформировании материала, сопряженном с процессами контактной теплопередачи от нагретых валков и конвективным переносом массы, чрезвычайно сложны. Однако для рационального построения систем тепловой автоматики процесса каландрования требуется хотя бы частичное их решение. Хотя слой каландруемого материала довольно тонок (обычно 2—3 мм), но скорость его перемещения велика (порядка 0,5—1 м/с) и температурное поле в зазоре существенно неоднородно. В ряде слу-[2, С.233]

Каландрование полимеров, рассмотренное в главе VII, во многом подобно вальцеванию. Поэтому его изотермическая модель в основном не отличается от модели вальцевания. Принципиальные отличия возникают при учете разогрева за счет работы вязкого трения и теплообмена с валками каландра. Модели такого рода уже не удается свести к аналитическим зависимостям. Поэтому они представляют собой системы дифференциальных уравнений движения сплошной среды, дополненных уравнениями неразрывности, теплопроводности и реологическими уравнениями состояния. Задавая соответствующие граничные условия, можно решить эту систему уравнений численными методами. Результаты такого решения применительно к ка-ландрованию резиновых смесей, полученные в работах В. Ю. Петру-шанского и А. С. Сахаева, показывают, что распределение температур по сечению листа сильно зависит от реологических характеристик полимера. В некоторых случаях внутри каландруемого материала могут иметь место локальные перегревы, достигающие десятков градусов.[3, С.13]

Влияние индекса течения на разогрев каландруемого материала[3, С.393]

Влияние индекса течения на разогрев каландруемого материала исследовали при фиксированном значении коэффициента консистенции. Полученные результаты (рис. VII. 18) свидетельствуют о том, что увеличение индекса течения приводит к уменьшению разогрева. Это объясняется уменьшением диссипативного члена в уравнении энергии с увеличением псевдопластичности.[3, С.393]

Влияние изменения теплофизических характеристик на разогрев каландруемого материала[3, С.393]

Работа толщиномеров емкостного типа основана на том, что лента каландруемого материала, пропускаемая между двумя изолированными электродами, образует конденса-" тор, емкость которого изменяется в зависимости[4, С.403]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
3. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
4. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
5. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
6. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную