На главную

Статья по теме: Карбоцепных полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Из карбоцепных полимеров наихудшая Д. у тех, макромолекулы к-рых содержат бензольные ядра, способные образовывать в результате термоокислитель-нон деструкции структуру типа графитовой. Хорошей Д. обладают гетероцепные полимеры, в основной цепи к-рых атомы углерода чередуются с др. атомами, способными при окислении образовать легколетучие продукты. Вследствие этого образование непрерывных токопроводящих дорожек затруднено. Еще более высока Д. элементоорганич. полимеров, таких как поли-органосилоксаны, т. к. в них относительно мало углерода и, кроме того, образующаяся при термоокислительной деструкции SiO2 очень тугоплавка и не проводит тока. Высокая Д. нек-рых неорганич. полимеров, напр, полна люмофосфатов, объясняется тем, что они не плавятся, совсем не подвержены термоокпслительной деструкции и мало подвержены термической деструкции.[33, С.383]

Любое полимераналогичное превращение карбоцепных полимеров можно использовать для синтеза сополимеров и, варьируя степень замещения функциональных групп, изменять в известных пределах свойства получаемых материалов. Однако свойства сополимеров, полученных сополимеризацией различных мономеров, отличаются от свойств аналогичных по составу сополимеров, образующихся в результате полимераналогичных превращений. Это объясняется различным расположением замещающих групп в макромолекулах этих сополимеров.[3, С.535]

Для увеличения скорости распада инициаторов, например пероксидов, в реакционную смесь вводят "промоторы" - восстановители. Окислительно-восстановительные инициирующие системы широко используются для проведения синтеза различных карбоцепных Полимеров. Инициирование процесса полимеризации путем применения окислительно-восстановительных систем характеризуется небольшим температурным коэффициентом (сравнительно малой кажущейся энергией активации).[2, С.218]

В карбоцепных полимерах такими участками являются двойные связи между углеродными атомами основной цепи. Как известно, цмс-транс-изомерия в цепях этих полимеров приводит к принципиальному различию в их свойствах. Так, транс-изомеры полимеров бутадиена и изопрена, более вытянутые в пространстве, кристалличны вплоть до сравнительно высоких температур, в то время как цис-изомеры при обычных температурах в основном аморфны и являются важнейшими эластомерами. Для других карбоцепных полимеров, например, полипентенамеров, более ценными свойствами, как эластомеры, обладают транс-изомеры в связи с тем, что температура плавления кристаллов цис-нзоме-ров смещена в область очень низких температур *.[1, С.19]

Ввиду того, что низко- и высокомолекулярные соединения в жидком состоянии резко отличаются по своему строению, различаются и механизмы их вязкого течения. Это легко видеть из наблюдений за зависимостью энергии активации И вязкого течения полимерных растворов или расплавов от молекулярной массы: U возрастает с молекулярной массой и достигает некоторой предельной величины. В случае парафиновой цепочки этот предел составляет 25 — 29 кДж/моль, для каучуков 14 кДж/моль и расплавов твердых карбоцепных полимеров 84 — 125 кДж/моль. Относительно низкие значения энергий активации у пелимеров свидетельствуют о том, что статистически независимая кинетическая единица течения — тот же сегмент цепи, включающий" в себя несколько десятков углеродных атомов хребта цепи, который является основным релаксатором и в высокоэластическом состоянии. Вязкость системы прямым образом зависит от числа сегментов, входящих в цепь. Соответственно, механизм вязкого течения полимеров заключается в перемещении цепей друг относительно друга путем перехода отдельных сегментов из одного равновесного положения в другое в результате теплового движения. Строго говоря, этот механизм течения справедлив для умеренно концентрированных растворов, а для полимеров, находящихся в более конденсированном состоянии, механизм течения более сложен.[4, С.168]

Для карбоцепных полимеров для модели свободносочленен-ной цепи имеем[2, С.86]

Среди карбоцепных полимеров наибольшее значение имеют полимеры виниловых соединений, диеновых углеводородов и их производных. К важнейшим органическим гетероцепным полимерам относятся полиэфиры, полиамиды, алкиды, фенолоальдегид-ные, мочевиноальдегидные, эпоксидные, полиформальдегид и такие природные высокомолекулярные вещества, как белки, целлюлоза и нуклеиновые кислоты.[18, С.281]

Название карбоцепных полимеров складывается обычно из названия исходного мономера, входящего в качестве элементарного звена в состав макромолекулы полимера, и приставки поли. Так, например, полимер, полученный из винилхлорида СЫ2=СНС1, называется поливи-нилхлоридом; полимер, полученный из этилена СНг=СН2 — полиэтиленом; полимер хлоропрена СН2 = С—СН=СН2 — полихлоропреном и т.д.[7, С.32]

Для многих карбоцепных полимеров выполняется приближенное уравнение[2, С.48]

Большинство карбоцепных полимеров получают по реакции полимеризации, они обладают высокой химической стойкостью к кислотам, щелочам и гидролизу, но имеют сравнительно невысокую термическую стойкость. Гетероцепные полимеры получают по реакциям поликонденсации или полиприсоединения. Среди таких полимеров наибольшее распространение получили полиэфиры, полиамиды, полиуретаны, полиэпоксиды и др. Гетероцепные полимеры имеют намного меньшую химическую стойкость по сравнению с карбоцепными, но обладают большей термостойкостью и прочностью.[11, С.52]

На стойкость карбоцепных полимеров к деструкции заметно влияет также взаимное расположение функциональных групп. Наличие в полимерах функциональных групп в положении 1,2 понижает их стойкость к деструкции. Поливиниловый спирт, обычно содержащий некоторое количество а-гликолевых группировок (гидроксильные группы в положении 1,2), частично расщепляется под действием йодной кислоты н кислорода воздуха:[7, С.299]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
5. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
6. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
7. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
8. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
9. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
10. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
11. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
12. Бартенев Г.М. Физика полимеров, 1990, 433 с.
13. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
14. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
15. Малышев А.И. Анализ резин, 1977, 233 с.
16. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
17. Пашин Ю.А. Фторопласты, 1978, 233 с.
18. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
19. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
20. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
21. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
22. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
23. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
24. Виноградов Г.В. Реология полимеров, 1977, 440 с.
25. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
26. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
27. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
28. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
29. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
30. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
31. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
32. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
33. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
34. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
35. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
36. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
37. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
38. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
39. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
40. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
41. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную