На главную

Статья по теме: Композиционного материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Моделирование композиционного материала эквивалентной однородной средой недостаточно для исследования локальных пластических деформаций или разрушения, дисперсии волн и решения других задач, определяемых как раз неоднородностью свойств материала по координатам. Естественно, что точное решение подобных задач для неоднородного материала возможно только в редких случаях, поэтому были развиты приближенные методы исследования. Из этих методов наибольшее распространение и обоснование получили методы малого параметра и осреднения, основные идеи которых и будут рассмотрены в данном параграфе.[2, С.123]

В случае изотропных включений, когда модуль упругости при сдвиге Gf сравним с матричным Gm, уравнение (2.5) описывает изменение комплексного модуля сдвига G* композиционного материала. В зависимости от объемного содержания Vj дискретной фазы его находят следующим образом:[1, С.45]

Рассмотрим способы экспериментального определения коэффициентов Fi и Рц для случая плоского напряженного состояния (обобщенного), реализуемого в тонких пластинах и оболочках из композиционного материала. Если принять плоскость нагру-жения (деформирования) за плоскость Oalaz, а ось Оа3 направить перпендикулярно плоскости OaV, то уравнение (2.91) в развернутом виде для рассматриваемого случая запишется в таком виде (учитывается симметрия (2.90) ) :[2, С.91]

Двухоболочечная модель Кернера [65] относится ко второй группе моделей. Из условия расширения сферического включения, окруженного однородной средой, вытекает требование непрерывности смещения и напряжения на поверхности включения. Предполагается, что однородная среда обладает упругими свойствами композиционного материала без включений. Модель связывает модули сдвига G, и объемного сжатия /С,- (или коэффициенты Пуассона V;) произвольного числа изотропных элементов с макроскопическими модулями Gc и Кс-[1, С.44]

Одной из основных задач механики композитов является задача проектирования материалов с заранее заданными жесткост-ными и прочностными характеристиками. Если армированный (композиционный) материал моделируется однородной анизотропной линейно упругой средой, то задача проектирования материала с заранее заданными жесткостными свойствами приводится к задаче теоретического определения модулей упругости (податливости) композиционного материала (так называемых эффективных модулей) по известным модулям упругости (податливости) компонентов.[2, С.120]

Для объяснения сложных механических свойств высокоанизотропных полимерных сеток необходимо иметь простое модельное представление об организации и взаимодействии структурных элементов и об их деформировании. Подобные модельные представления будут полезны при дальнейших исследованиях, в которых придется ограничиться примерами отдельных структурных моделей, поверхностно их касаясь или исключая большую часть других. В этом разделе будут описаны предложенные формы структурных элементов и типы их взаимодействия -на основе теорий деформирования композиционного материала. Подобные теории разработаны с учетом поведения при малых деформациях. Они могут быть распространены на теории прочности только в случае определения критериев ослабления, которые становятся эффективными в случае справедливости определенной теории деформирования.[1, С.43]

Комплексный модуль сдвига композиционного материала 45 Конформация 119, 120[1, С.432]

Для решения данной задачи рассматривается элемент композиционного материала, па границе которого задаются воздействия, имитирующие воздействия, возникающие в испытательных машинах при проведении серии опытов (чистое растяжение, кручение, всестороннее сжатие и т. д.), для определения полного набора модулей анизотропного однородного материала.[2, С.120]

Роль адгезионного взаимодействия в формировании свойств композиционного материала чрезвычайно велика и многогранна. Здесь мы коснемся только одной стороны проблемы — некоторых особенностей деформационных свойств комбинированных материалов, обусловленных адгезионным взаимодействием между компонентами. Приведем примеры аномальных свойств комбинированных материалов. Цилиндрические образцы из серебра, армированные стальной проволокой, обнаруживают способность к удлинению, в 2 раза превышающему расчетное [288, 289]. Композиция, состоящая из тонких слоев Ag и Си или РЬ и Zn, при растяжении гораздо прочнее любого из компонентов [288]. Механизм упрочнения объясняют блокировкой дислокаций у поверхности раздела [288]. Двуслойный пленочный материал из двух пленок полиэтилена, соединенных полиизобутиленом, имеет предел прочности при растяжении выше, чем одинарная пленка той же толщины [291, 292]. Эффект упрочнения в этом случае объясняют блокировкой опасных дефектов одного слоя бездефектными участками прилегающего второго слоя, приводящей к синхронной работе слоев материала и перераспределению напряжений [291—293, 390].[10, С.195]

Этим же способом получаются формулы для изотропного в среднем композиционного материала, состоящего из TV фаз с модулями G;, Kt для i-й фазы п с объемным содержанием vt:[2, С.122]

Принимая теперь гипотезу Фойгта п определяя эффективные модули в среднем изотропного композиционного материала, немедленно приходим к формуле '(3.51) ; аналогичным образом получается и формула (3.52).[2, С.122]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
5. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
6. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
10. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
13. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.

На главную