Области применения оптической микроскопии. С помощью поляризационной О. м. можно г режде всего найти линейные и угловые размеры структурных элементов, поскольку величина Дге непосредственно связана с толщиной объекта d (см. вышеприведенную ф-лу). Помимо этого, метод позволяет определять важные оптич. характеристики (показатели преломления, знак дпулучспрсломления) как структурных элементов, так и полимерных систем в целом. Установление знака Дк в элементе надмолекулярной структуры весьма существенно, ибо позволяет определить ориентацию молекулярных ценей в нем. В свою очередь (напр., при появлении положительных, отрицательных и «аномальных» сферолнтов в нолиэтилентерефталате), знание ориентации цепей позволяет сделать важные выводы о кинетике и морфологии кристаллизации в разных режимах. Не менее важные выводы на основе изменений знака Дп, сопровождающих деформацию сфероли-тов в растягиваемых волокнах или пленках, м. б. сделаны о кинетике и морфологии ориентацнонных процессов. По поводу значимости определения А« в аморфных полимерах см. Фотоупругость.[18, С.242]
Области применения оптической микроскопии. С помощью поляризационной О. м. можно прежде всего найти линейные и угловые размеры структурных элементов, поскольку величина Д« непосредственно связана с толщиной объекта d (см. вышеприведенную ф-лу). Помимо этого, метод позволяет определять важные оптич. характеристики (показатели преломления, знак двулучепреломления) как структурных элементов, так и полимерных систем в целом. Установление знака А» в элементе надмолекулярной структуры весьма существенно, ибо позволяет определить ориентацию молекулярных цепей в нем. В свою очередь (напр., при появлении положительных, отрицательных и «аномальных» сферолитов в полиэтилентерефталате), знание ориентации цепей позволяет сделать важные выводы о кинетике и морфологии кристаллизации в разных режимах. Не менее важные выводы на основе изменений знака Ди, сопровождающих деформацию сферолитов в растягиваемых волокнах или пленках, м. б. сделаны о кинетике и морфологии ориентационных процессов. По поводу значимости определения Аи в аморфных полимерах см. Фотоупругость.[21, С.240]
На явлении отражения света основаны методы оптической микроскопии, имеющие достаточно солидный возраст (известны на протяжении более чем двух столетий), но активно используемые и развивающиеся сегодня.[5, С.195]
В случае наноструктурных материалов исследования с помощью оптической микроскопии не позволили обнаружить локализацию деформации вплоть до очень поздних стадий циклической деформации. Более того, значение РЕ остается постоянным с самого начала циклической деформации. Это означает, что обратные напряжения в этих материалах не изменяются при циклической деформации, что само по себе необычно для усталостного поведения материалов. Тем не менее, как видно из рис. 5.18а, некоторое циклическое упрочнение в наноструктурных материалах наблюдается, что свидетельствует об увеличении внутренних напряжений.[3, С.215]
Кинетику этих процессов и их результаты наиболее удобно изучать методом оптической микроскопии и методом фрактографии с последующим микроскопированием. Первый метод дает особенно ценный материал при применении фотографирования или даже киносъемки всего процесса. Этот метод, позволяющий исследовать как медленные, так и быстрые стадии процесса образования трещин, является основным при изучении микротрещин. Метод фрактографии состоит в изучении поверхности разрушения образца под микроскопом. Он дает возможность проследить за ростом микро- и макротрещин, их взаимодействием и т. д.[16, С.225]
Кинетику этих процессов и их результаты наиболее удобно изучать методом оптической микроскопии и методом фрактографии с последующим микроскопированием. Первый метод дает особенно ценный материал при применении фотографирования или даже киносъемки всего процесса. Этот метод, позволяющий исследовать как медленные, так и быстрые стадии процесса образования трещин, является основным при изучении микротрещин. Метод фрактографии состоит в изучении поверхности разрушения образца под микроскопом. Он даст возможность проследить за ростом микро- и макротрещин, их взаимодействием и т. д.[19, С.225]
На основании подобных исследований, выполненных в основном при использовании оптической микроскопии и рентгеновской дифракции в больших углах, часто предполагают возможность осуществления больших деформаций хорошо развитых крупных сферолитов по ступенчатому механизму с разрушением высших структур при сохранении более простых структурных элементов. На наш взгляд нет необходимости противопоставлять этот механизм рекристаллизационному превращению сферолитной структуры в микрофибриллярную. По достижении достаточно больших удлинений (если обрыв образца не наступает раньше) все участки крупных сферолитов перестраиваются в конце концов в микрофибриллы, причем перестройка идет по тому же механизму рекристаллизации.[13, С.206]
Тип и размер надмолекулярных структур полимеров устанавливают при помощи электронной и оптической микроскопии, реит-геноструктурного анализа и других методов. Чем меньше и однороднее по размерам структуры, тем лучше физико-механические свойства проявляет полимер (табл. II. 1),[6, С.33]
Сферолиты довольно просто наблюдать экспериментально из-за их сравнительно больших размеров (50—1000 мкм). При оптической микроскопии в поляризованном свете они выглядят в виде кружков, на которых четко выделяются интерференционные картины в виде мальтийских крестов; появление последних всегда свидетельствует о наличии сферической симметрии в расположении элементов, способных к проявлению эффекта двулучепреломления. Молекулам полимеров по их природе присуща склонность к двулучепреломле-нию; в большинстве случаев их поляризуемость вдоль молекулярной оси существенно выше, чем в перпендикулярном направлении.[1, С.52]
Наличие или отсутствие структурных элементов в некристаллических полимерах обычно оценивается с помощью структурных методов: по дифракции рентгеновских лучей, электронов и нейтронов, методами поляризационной оптической микроскопии, светорассеяния и радиоспектроскопии.[2, С.26]
Для количественного согласования данных по разрыву и раздиру при простом растяжении необходимы поправки на дефектность структуры, а для более сложных видов нагружения - учет критериев разрушения. Механизм раздира может быть охарактеризован с помощью оптической микроскопии (при увеличении в 100 раз) и параметра линейного приближения поверхности R2.[5, С.539]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.