На главную

Статья по теме: Ориентированное состояние

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Ориентированное состояние полимеров - специфическое состояние материала из линейных полимеров, характеризуемое тем, что составляющие эти материалы макромолекулы имеют преимущественное расположение осей вдоль некоторых направлений - осей ориентации - во всем объеме материала (см. Анизотропия свойств полимеров).[1, С.402]

Текстура полимера - ориентированное состояние кристаллизующихся полимеров, которое характеризуется определенным преимущественным расположением кристаллитов и соответствующей анизотропией свойств (см.).[1, С.406]

В некристаллических полимерах ориентированное состояние может сохраняться в результате поддерживания внешних усилий, охлаждения полимеров ниже температуры стеклования или их сшивания, а также при испарении и выжимании растворителя. Надмолекулярные структуры кристаллических полимеров обладают большей стабильностью, устойчивость ориентации обеспечивается кристаллизацией.[3, С.184]

Второе заключается в том, что волокнообразование - это процесс перевода системы в неравновесное ориентированное состояние в результате приложения внешних силовых полей (механических, электромагнитных, ферментативных). Поэтому в качестве волокнообразующих полимеров оказываются наиболее эффективными фибриллярные белки (фиброин, коллаген).[1, С.336]

Одним из основных способов улучшения механических свойств линейных полимеров является их вытяжка. Чтобы зафиксировать ориентированное состояние, полученное в результате вытяжки, полимер охлаждают до температур меньших температуры стеклования. Возникающая анизотропия свойств полимеров отражает анизотропию в ориентации макромолекул. Поэтому, измеряя величину анизотропии каких-либо свойств полимера' можно получать информацию о степени ориентации его макромолекул. Одним из наиболее чувствительных индикаторов является двойное лучепреломление (оптическая анизотропия); значение коэффициента двойного лучепреломления Are часто используется в качестве меры ориентации полимера. Установлено, что Are линейно связан со средним квадратичным отклонением ориентации макромолекул от изотропного состояния.[3, С.187]

В последнее время практикуют радиальное растягивание образца, частично выпрямляя таким путем макромолекулы, расположенные в различных направлениях. Не снимая растягивающего усилия, полимер охлаждают ниже температуры его стеклования, благодаря чему полимер сохраняет приобретенное ориентированное состояние.[2, С.48]

ОРИЕНТИРОВАННОЕ СОСТОЯНИЕ ПОЛИМЕРОВ[3, С.184]

Ориентированное состояние, в принципе, может быть достигнуто одним из трех способов [31, дополнение II]: перестройка, сборка и прямое генерирование из бесструктурного раствора или расплава. До сих пор в технологии химических волокон и пленок доминирует принцип перестройки, связанный с термическими и[3, С.216]

Наряду со способностью к высокоэластической деформации, способность полимеров к переходу в ориентированное состояние является одним из их главных отличительных свойств по сравнению с простыми веществами. Возникновение резкой анизотропии физических свойств в ориентированном состоянии с позиций физики является даже более важным и характерным свойством полимеров, чем способность к проявлению каучукоподобной эластичности. Это анизотропия, достигаемая разными способами, в рав-[3, С.228]

Системы, у которых напряжение сдвига изменяется не пропорционально скорости сдвига, называются неньютоновскими. В случае проявления неньютоновского течения для системы характерна зависимость вязкости от напряжения сдвига r| = ri(P). Чтобы отличить такую вязкость от ньютоновской, ее называют «структурной», так как часто эта зависимость связана с разрушением структуры системы под действием напряжений. Чтобы отличить обе вязкости, ньютоновская обозначается т]о, а структурная — т]. Структурная вязкость т), зависящая от напряжения или скорости деформации, для различных веществ наблюдается при переходе структуры из неориентированного в ориентированное состояние (ориен-тационные эффекты), обратимом (тиксотропном) разрушении структуры, при увеличении скорости деформации сдвига и уменьшении энергии активации процесса течения. 6.1.2. Механизмы неньютоновского течения[4, С.148]

Глава VI. Ориентированное состояние полимеров . . . . . .'.184[3, С.288]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
7. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
8. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
9. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
12. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
13. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
14. Бартенев Г.М. Физика полимеров, 1990, 433 с.
15. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
16. Серков А.Т. Вискозные волокна, 1980, 295 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
19. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
20. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
21. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
22. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
23. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
24. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
25. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
26. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
29. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
30. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
31. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
32. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную