На главную

Статья по теме: Полимеров ДЕФОРМАЦИЯ

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

У силышполярных полимеров деформация развивается значительно медленнее, чем у неполярных, поэтому При комнатных температурах высокоэластическая деформация у них не проявляется (они находятся в стеклообразном состоянии). При ггагревашш выше Тс сильнополярные полимеры переходят в высокоэластическое состояние, но вследствие сильного межмолекулярного взаи-„ модействия релаксационные процессы в них очень замедлены. Это означает, что время, необходимое для полною восстановления образца, очень велико. Замедленность релаксационных процессов наблюдается также в тех случаях, когда в цепях полимеров имеются замещающие группы больших размеров (полистирол, бу-тадиен-стирольный каучук). Это следует учитывать при практиче-_ ском применении полимеров, особенно если изделия из них эксплуатируются в условиях динамической нагрузки при больших частотах.[2, С.179]

У силышполярных полимеров деформация развивается значительно медленнее, чем у неполярных, поэтому при комнатных температурах высокоэлаешческая деформация у них не проявляется (они находятся в стеклообразном состоянии). При нагревании выше Тс, сильнополярные полимеры переходят в высокоэластическое состояние, но вследствие сильного межмолекулярного взаимодействия релаксационные процессы в них очень замедлены. Это означает, что время, необходимое для полною восстановления образца, очень велико. Замедленность релаксационных процессов наблюдается тзкже в тех случаях, когда в цепях полимеров имеются замещающие группы больших размеров (полистирол, бу-тадиен-стирольный каучук). Это следует учитывать при практиче-. ском применении полимеров, особенно если изделия из них эксплуатируются в условиях динамической нагрузки при больших частотах.[4, С.179]

В зависимости от величины начального напряжения в этом режиме возможно хрупкое или вязкое разрушение. Первое было рассмотрено выше, поэтому остановимся на втором. Обычно оно возникает при <го>0,5<тт и сопровождается резким увеличением скорости ползучести. Соответственно на образце появляется шейка, которая быстро распространяется на деформируемый объем. В условиях вязкого разрушения полимеров деформация ползучести достаточно велика. Например, у полиэтилена высокой плотности она достигает 1800% {225]. Поэтому вязкое разрушение пластмассового стержня, длительно растягиваемого постоянной нагрузкой Р, разумно интерпретировать как неограниченное течение. Подобным образом интерпретировали этот процесс Генки, а также Хофф [107, 109, 157]. Следуя схеме Хоффа, обозначим через /, /о, а также F и Р0 текущую и начальную длины и площадь 'сечения -стержня. По условию несжимаемости[6, С.221]

Как уже указывалось, вынужденно-эластические деформации могут проявляться только под влиянием больших напряжений. Поэтому после прекращения действия деформирующего усилия скорость исчезновения аыцуждецно-эластичес^их деформаций очень мала и при температуре ниже Тс опи не снимаются. При температурах пыше 7Y образец полностью восстанавливает свои размеры. Таким образом, деформация стеклообразных полимеров всегда яо-С]П обратимый характер.[2, С.211]

Рис. 8G Зависимость относительного Рис, 87. Зависимость относительного удлинения от натфяжештя для стекло- удлинения ог напряжения для стеклообразных полимеров (деформация образных, полимеров (деформация С образованием шейки). без образования шейки)[2, С.211]

ДЕФОРМАЦИЯ ПОЛИМЕРОВ [I][5, С.355]

Для моделирования поведения разветвленных и сшитых полимеров, деформация которых ограничена существованием пространствен-[7, С.30]

Для моделирования поведения сшитых полимеров, деформация которых ограничена существованием пространственной структуры, можно воспользоваться моделью, известной под названием модели Кельвина — Фойхта (рис. 1.26).[8, С.41]

Таким образом, как и в случае ориентированных полимеров, деформация сопровождается разрушением, так что с каждым циклом структура полимера меняется, полимер «ослабевает». Следует отметить, что релаксация напряжения в области упругой деформации показывает обратную закономерность (рис. 38, б): с каждым циклом скорость релаксации напряжения уменьшается. Такое поведение характерно для редких сеток и неориентированных полимеров и связано с развитием процессов ориентации.[9, С.236]

Первый участок отвечает стеклообразному состоянию полимеров. Деформация в этой области носит упругий гу-ковский характер и практически не изменяется с увеличением температуры вплоть до температуры стеклования. Ма-[11, С.74]

нейных несшитых полимеров. Деформация таких полимеров состоит практически из высокоэластической и вязкой составляющих (чисто упругой частью деформации можно пренебречь). В некоторых случаях удается обе составляющих деформации полностью разделить, например, при установившемся режиме течения, когда наблюдается равновесие между числами неразрушенных и разрушенных физических узлов. В последнем случае к высокоэластической составляющей деформации, не зависящей от времени, а только от приложенного напряжения, могут быть применены термодинамические соотношения.[3, С.141]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Бартенев Г.М. Физика полимеров, 1990, 433 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
7. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
8. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
9. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
10. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
11. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную