На главную

Статья по теме: Релаксация напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В этой книге не раз отмечалось, что релаксация напряжения не может и не должна быть связана исключительно с разрывом цепи [2—52]. Тем не менее были продолжены попытки объяснения кривых напряжение—деформация ПА-6 [49—51] и волокна поли [пара-(2-гидроксиэтокси) бензойной кислоты] [52] с учетом кинетики образования свободных радикалов. В данных моделях учитывались распределения относительных длин проходных сегментов. При этом предполагалось, что плотность распределения N(L/L0) остается неизменной в широком температурно-временнбм интервале. Как детально показано в гл. 5, сегменты проходных цепей будут реагировать на деформацию еа преимущественно эластически, если еа< (L — L0)/L0; они будут разрушаться, если еа>(1 + -{-tyb/Ek)L/Lo—1, и будут находиться в энергоупругом состоянии в промежуточной области, когда оказывается, что они полностью вытянуты и нагружены ниже своего критического состояния нагружения. С учетом данных представлений можно построить однородную четырехфазную модель (рис. 8.13). Основанием этой модели служит предположение о том, что высокоориентированное частично-кристаллическое волокно можно представить в виде ряда кристаллических и аморфных областей, причем последние состоят из трех фаз: полностью вытянутых сегментов, невытянутых проходных цепей и остальной[2, С.247]

При сравнении непрерывной и периодической релаксации напряжения становится явным влияние ускорения механических напряжений на химическую релаксацию. Относительная релаксация напряжения 1 — a(t, К) /0(0, X) при непрерывном нагру-жении сильнее выражена для более высоких значений Я, и оказывается всегда больше, чем при прерывистом воздействии нагрузки. Мураками также рассматривал [209d] возможное увеличение относительного напряжения за счет реакций сшивки и частичных помех данным реакциям со стороны радикальных акцепторов.[2, С.318]

Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью т]). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ц), соединенными последовательно, и Фохта — Кельвина с пружиной (G) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = T]/G, а в мо" дели Фохта — Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т;. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14b, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G(t) выражается[2, С.39]

Обобщая приведенные выше результаты, можно прийти к выводу, что при воздействии на высокоориентированные волокна циклической нагрузки, которая всегда остается положительной по знаку, единственным механизмом усталости является гистерезисное выделение тепла. Однако если в цепях и фибриллах возможна релаксация напряжения, деградация вместо эффекта деформационного упрочнения и переориентация цепей и фибрилл, то преимущественным фактором будет начало роста и распространение трещин. Таким образом, усталостный механизм, описанный Банселлом и Хирлем [77, 79], проявляется в усилении межфибриллярного проскальзывания и росте трещин почти параллельно направлению нагружения. Данный вопрос будет рассмотрен в следующем разделе. Характерные усталостные механизмы также четко проявляются в неориентированных полимерах. Они будут рассмотрены в разд. 8.2.3 данной главы и в следующей главе.[2, С.263]

Выражением релаксационного характера механических свойств полимеров являются такие широко известные факты как трудность достижения равновесного значения высокоэластической деформации, медленное увеличение деформации при постоянной нагрузке (ползучесть), убывание напряжения со временем в деформированном образце (релаксация напряжения), различие в напряжении при одной и той же величине деформации в случае нагру-жения и в случае разгружения (механический гистерезис и связанные с ним тепловые потери), отставание при периодическом деформировании деформации от напряжения и, как следствие этого, существование так называемого тангенса угла механических потерь.[1, С.41]

Бесспорно, что большое число разрывов цепей в процессе механического воздействия [1] само по себе не служит ни доказательством, ни даже указанием на то, что релаксация макроскопического напряжения, деформирование и разрушение материала являются следствием разрыва таких цепей. Как отмечали Кауш и Бехт [2], полученное число разорванных цепей намного меньше (с учетом их потенциальной работоспособности) их числа, необходимого для объяснения уменьшения фиксируемого макроскопического напряжения. Как показано на рис. 7.4, релаксация напряжения в пределах ступени деформирования (0,65%) равна 60—100 МПа. Однако если полагать, что проходные сегменты пересекают только одну аморфную область, то изменение нагрузки, соответствующее работоспособности 0,7-1017 цепных сегментов, разорванных на данной ступени деформирования, составляет 2,4 МПа. Оно будет равным «•2,4 МПа, если проходные сегменты соединяют п подобных областей. В этом и большинстве последующих расчетов будет использована сэндвич-модель волокнистой структуры, подобная показанной на рис. 7.5 (случай I). Очевидно, что в случае п = 1 величина релаксации макроскопического напряжения в 25—40 раз больше уменьшения накопленного молекулярного напряжения, рассчитанного исходя из числа экспериментально определенных актов разрыва цепей. Однако в данном случае также следует сказать, что подобное расхождение результатов расчетов само по себе не является ни доказательством, ни даже указанием на то, что релаксация макроскопического напряже-[2, С.228]

В рамках линейной теории вязкоупругости релаксация напряжения (при заданной деформации е = const) выражается урав-: нением:[3, С.59]

Для одного сорта кинетических единиц, участвующих в одном релаксационном процессе, релаксация напряжения подчиняется уравнению Максвелла:[3, С.59]

Растворимости параметр 386, 387 Растяжение двуосное 70 Расчленение пучка цепей 52 Расщепление волокна 264 Реакции механорадикалов 220 Релаксации максимум 357 Релаксация напряжения 147, 192, 228,[2, С.434]

Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для ^-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением, надмолекулярных структур — микроблоков. Различие между про-[4, С.347]

В качестве примера можно привести диаграмму Смита (см. [82]) для эластомеров (рис. 11.3). Семейство кривых — кривые растяжения при разных скоростях (или температурах). Их конечные точки — это точки разрыва, которые образуют огибающую разрывов ABC. Диаграмма Смита позволяет определить прочность эластомера не только при разных скоростях растяжения и температурах, но и при различных режимах деформации. Растянем образец до точки D "(при данной скорости), а затем сменим режим деформации. Например, зафиксируем деформацию в точке D. В результате будет происходить релаксация напряжения до тех пор, пока в точке D\ не произойдет разрыв образца. Пусть далее в точке D зафиксирована нагрузка, тогда будет наблюдаться ползучесть, пока в точке DZ не произойдет разрыв. Диаграмма Смита является наглядным примером рассматриваемого подхода к проблеме прочности эластомеров.[4, С.286]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Белозеров Н.В. Технология резины, 1967, 660 с.
7. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
8. Амброж И.N. Полипропилен, 1967, 317 с.
9. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
12. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
13. Бартенев Г.М. Физика полимеров, 1990, 433 с.
14. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
15. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
16. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
17. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
18. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
19. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
20. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
21. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
22. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
23. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
24. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
25. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
26. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
27. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
28. Северс Э.Т. Реология полимеров, 1966, 199 с.
29. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
30. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
31. Аскадский А.А. Химическое строение и физические свойства полимеров, 1983, 248 с.
32. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
33. Виноградов Г.В. Реология полимеров, 1977, 440 с.
34. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
35. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
36. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
37. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
38. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
39. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
40. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
41. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
42. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
43. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
44. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
45. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
46. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
47. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
48. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
49. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
50. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
51. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную