На главную

Статья по теме: Скоростях растяжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При малых скоростях растяжения процесс разрушения резин осуществляется путем роста надрывов, т. е. необратимо. Уравнение разрушения (VII. 2) может быть применено с достаточной степенью точности, только если шероховатая зона поверхности разрушения мала. Ввиду медленности развития шероховатой зоны это условие применимо в широком диапазоне скоростей растяжения, и тем более при больших скоростях. Временную зависимость прочности резин, учитывая закон деформации (VII. 3), можно записать в форме:[7, С.192]

Нет никаких сомнений, что заметные скачки температуры действительно возникают при обычных скоростях растяжения, так что представления Маршалла и Томпсона очень существенны для понимания процесса образования шейки в целом. Однако прямые калориметрические измерения показали [16], что при низких скоростях растяжения повышение температуры столь мало (не более 10 °С), что этот эффект не может объяснить образования и распространения шейки как следствие адиабатического разогрева. Позднее это было в явной форме продемонстрировано Лазуркиным [17], который осуществил холодную вытяжку резин (ниже их температуры стеклования) при очень низких скоростях в квазистатических условиях. Вин-сен [3] подтвердил этот результат, показав, что холодная вы-[12, С.269]

Исследовали аморфную пленку ПЭТФ толщиной 0,3 мм (ГС = 80°С). Образцы испытывали при различных скоростях растяжения, определяли степень необратимой деформации и степень ориентации (температуры опытов 20 и —196°С). Вследствие высокой прочности пленок ав достигался при очень низкой температуре, и хрупкого разрыва не наблюдалось даже при —196 °С. При этой температуре при модуле упругости Е = = 4,6 ГПа предел упругости равен 130 МПа. Необратимая деформация появляется благодаря возникновению при растяжении трещин «серебра», которые не закрываются при разгрузке.[14, С.211]

На рис. 11.36 приведены некоторые результаты определения скорости распространения разрыва v' при различных скоростях растяжения v. Во всех исследованных случаях значение т'р уменьшалось с ростом v. Нетрудно заметить общую тенденцию к возрастанию максимального значения v' с увеличением v. В процессе распространения разрыва скорость его непрерывно изменяется. Однако принципиально возможно подобрать такой режим деформации, при котором распространение разрыва происходило бы с постоянной скоростью, проходя путь i за время т р.[8, С.104]

Природа когезионной прочности резиновых смесей. В практике шинного производства под когезионной прочностью понимают способность невулканизованных сажевых смесей развивать достаточно высокие напряжения (~1МПа) при деформациях ~400% и скоростях растяжения до 100 см/мин.[1, С.74]

Из уравнения (12.10) следует, что в координатах lg ap; Т~1 данные должны ложиться на прямые, что и подтверждается в широком температурном интервале (рис. 12.12),соответствующем высокоэластическому плато эластомера. Прямолинейные участки наблюдаются при всех скоростях растяжения и с одинаковым наклоном, равным 0,63 • 103 К"1 для сшитого и 0,75 • 103 К"1 для несшитого эластомера СКС-30. В соответствии с уравнением (12.10) эти значения должны быть равны U/(2, 3 т/г). Отсюда по уже известному значению m можно вычислить энергию активации. Последняя для несшитых и сшитых эластомеров СКС-30 составляет 54,5 кДж/моль, в то время как значения m соответственно равны 3,7 и 4,4 (см. табл. 12.1)). Одна из причин сходства механизмов разрушения у несшитых и сшитых эластомеров, вероятно, лежит в существовании у несшитых эластомеров физических узлов-микроблоков. Иначе говоря, несшитый эластомер может рассматриваться аналогично химически сшитому эластомеру. Коэффициент m и энергия активации по долговечности и разрывной прочности были получены для эластомера СКМС-10, данные о котором приведены в табл. 12.2. 12.2.3. Инвариантность энергии активации различных процессов[4, С.346]

Закс и др. [169] исследовали образование шейки в поликарбонате. Вследствие уменьшения поперечного сечения образца в области шейки материал в процессе «прохождения через шейку» приобретает ориентационную деформацию А, равную ~2. При комнатной температуре и различных скоростях растяжения образца, соответствующих скоростям деформации в области шейки 0,02—2 с~', авторы работы [169] получили довольно стабильный спектр ЭПР, который, однако, был недостаточно разрешен. Интенсивность данного спектра возрастала в зависимости от скорости прохождения невытянутого ПК через шейку от 3-Ю15 до 1,8-1016 спин/г (рис. 7.12). Эти же авторы исследовали также поведение стабильных нитро-ксидных радикалов и радикалов, образующихся путем фотолиза в процессе образования шейки в образцах ПЭНП и ПК-Наблюдаемый при этом возросший спад числа первоначально присутствующих радикалов может быть вызван их реакцией со вновь образующимися радикалами, а также с возросшей скоростью рекомбинации или спада числа присутствующих радикалов под влиянием деформации. На существование последнего явления в высокоориентированных полимерах ПЭВП, ПП, ПА-12 и ПЭТФ указывали Бехт и др. [47].[2, С.306]

В качестве примера можно привести диаграмму Смита (см. [82]) для эластомеров (рис. 11.3). Семейство кривых — кривые растяжения при разных скоростях (или температурах). Их конечные точки — это точки разрыва, которые образуют огибающую разрывов ABC. Диаграмма Смита позволяет определить прочность эластомера не только при разных скоростях растяжения и температурах, но и при различных режимах деформации. Растянем образец до точки D "(при данной скорости), а затем сменим режим деформации. Например, зафиксируем деформацию в точке D. В результате будет происходить релаксация напряжения до тех пор, пока в точке D\ не произойдет разрыв образца. Пусть далее в точке D зафиксирована нагрузка, тогда будет наблюдаться ползучесть, пока в точке DZ не произойдет разрыв. Диаграмма Смита является наглядным примером рассматриваемого подхода к проблеме прочности эластомеров.[4, С.286]

Рис. 540. Кривые напряжение деформация / Е линейного цнс-1,4-1Юлннэопре«а(/, 2,3} и нерегулярного полиОутадиена (/', 2',3') при различных скоростях растяжения при 295 К[6, С.334]

При построении кривых необходимо учесть масштаб записи на диаграммной ленте по вертикали Д/ и по горизонтали f, а также их изменение при различных скоростях растяжения.[5, С.164]

Учет временного характера процесса разрушения резин должен привести к выводу о возрастании прочности с увеличением скорости нагружения. Между тем при больших скоростях растяжения наблюдаются аномальные отклонения от этой закономерности, обнаруженные Журковым с сотр.5 для резин из натурального и синтетических каучуков. Исследования проводились в широком интервале скоростей растяжения—от 0,2 см/сек до 31 м/сек, что соответствует скоростям деформации от 7% до 1,3-]05% в секунду. В отдельных опытах скорость деформации снижалась до 10~5% в секунду. С повышением скорости деформации увеличивается модуль высокоэластичности и изменяется прочность резины.[7, С.186]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
8. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
9. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
10. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
11. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
12. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
15. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
16. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
17. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную