На главную

Статья по теме: Составляющей деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Наконец, поскольку результаты капиллярной вискозиметрии, особенно при малых тш, зависят от высокоэластической составляющей деформации и дополнительных потерь вязкого трения, возникающих вследствие перестройки профиля скоростей на входе в капилляр, необходимо ввести поправку в величину т№. Способ вычисления поправки рассмотрен в разд. 13.2.[1, С.164]

Описанные выше экспериментальные результаты могут быть объяснены, исходя из следующих предположений. Следует учитывать существование мгновенной упругой составляющей деформации, которая всегда пропорциональна напряжению. Запаздывающая ползучесть и упругое восстановление при любых уровнях нагрузки остаются однозначными функциями напряжения. Из этих предположений вытекает видоизмененная формулировка принципа суперпозиции Больцмана, которая представляется формулой[9, С.199]

Влияние молекулярной ориентации более или менее четко заметно для полимеров только при малых напряжениях сдвига, когда процесс перестройки надмолекулярной структуры еще слабо развит, и для олигомеров, когда молекулярная масса столь мала, что не образуется пространственной надмолекулярной структуры. Существенное проявление высокоэластической составляющей деформации наблюдается в возникновении нормальных напряжений. Хотя они и сопоставимы по значению с тангенциальными, влияние тех и других на физические свойства вязкого потока полимерной системы существенно различно. Тангенциальное напряжение вызывает вязкое течение и приводит к разрушению надмолекулярной структуры полимеров, тогда как нормальное напряжение приводит лишь к небольшому изменению гидростатического давления в потоке и практически его влияние на изменение структуры и вязкость полимерной системы несущественно. Уменьшение вязкости в процессе течения, наблюдаемое при относительно больших напряжениях, может быть объяснено изменением исходной надмолекулярной структуры полимера, если установлено, что его молекулярная масса при этом остается неизменной.[3, С.166]

При адиабатическом процессе нагружения тела, проявляющего деформацию вязкого течения, принимают [561, с. 119], что будет происходить увеличение энергии. Возрастание энтропии обусловлено необратимым характером деформации. (Следует, однако, иметь в виду, что для полимеров характерно одновременное возрастание обратимой высокоэластической или вынужденно-эластической составляющей деформации). Возрастание энтропии будет[7, С.263]

Наблюдаемый эффект инверсии (см. рис. III. 7) объясняется неравновесностью процесса при быстром растяжении резины, когда в начале деформации ее упругая составляющая может иметь заметную величину по сравнению с высокоэластической. При равновесной же деформации резины упругая составляющая ее имеет ничтожную величину, примерно равную 0,05% от высокоэластической составляющей. При аналиве в предыдущих разделах этой упругой составляющей деформации резины мы пренебрегали.[2, С.121]

Термодинамические соотношения можно в отдельных случаях применять для полимерных тел с вязко-текучими свойствами. Деформация таких полимеров состоит практически из высокоэластической и пластической составляющих, так ка'к чисто упругой деформацией можно пренебречь: В некоторых случаях удается обе составляющие деформации полностью разделить — например, при установившемся режиме течения. В последнем случае к высокоэластической составляющей деформации, зависящей не от времени, а только от приложенного напряжения, могут быть применены термодинамические соотношения.[2, С.110]

Придание формы изделию из термопластов м. б. достигнуто в результате развития в полимере пластической или высокоэластич. деформации. Из-за высокой вязкости материала эти процессы деформирования протекают с низкой скоростью. В зависимости от физич. состояния, в к-ром полимер находится в момент формования, в готовом изделии достигается различная степень неравновеснос/ш из-за неполной релаксации внутренних напряжений. Это накладывает определенные ограничения на температурный интервал эксплуатации изделий, полученных различными методами. Увеличение доли высокоэластпч. составляющей деформации ведет к снижению верхнего температурного предела эксплуатации вплоть до темп-ры стеклования. Это особенно заметно проявляется при обработке изделий и полуфабрикатов из полимерных материалов, находящихся в стеклообразном состоянии, при напряжениях, превышающих предел вынужденной высокоэла-стпчности. Такой прием позволяет в значительной степени увеличить прочностные показатели вследствие ориентации надмолекулярных образований п уплотнения рыхлой структуры полимера (напр., при прокатке пленок и труб). Однако изделия, полученные этим методом, должны эксплуатироваться при темп-рах ниже темп-ры стеклования полимера, т. к. при более высоких темп-pax они начинают необратимо деформироваться из-за резкого ускорения релаксационных процессов.[12, С.293]

Придание формы изделию из термопластов м. б. достигнуто в результате развития в полимере пластической или высокоэластич. деформации. Из-за высокой вязкости материала эти процессы деформирования протекают с низкой скоростью. В зависимости от физич. состояния, в к-ром полимер находится в момент формования, в готовом изделии достигается различная степень неравновесности из-за неполной релаксации внутренних напряжений. Это накладывает определенные ограничения на температурный интервал эксплуатации изделий, полученных различными методами. Увеличение доли высокоэластич. составляющей деформации ведет к снижению верхнего температурного предела эксплуатации вплоть до темп-ры стеклования. Это особенно заметно проявляется при обработке изделий и полуфабрикатов из полимерных материалов, находящихся в стеклообразном состоянии, при напряжениях, превышающих предел вынужденной высокоэла-стичности. Такой прием позволяет в значительной степени увеличить прочностные показатели вследствие ориентации надмолекулярных образований и уплотнения рыхлой структуры полимера (напр., при прокатке пленок и труб). Однако изделия, полученные этим методом, должны эксплуатироваться при темп-рах ниже темп-ры стеклования полимера, т. к. при более высоких темп-pax они начинают необратимо деформироваться из-за резкого ускорения релаксационных процессов.[14, С.291]

Для экспериментального исследования влияния динамического нагружения на скорость деструкции вулканизацион-ной сетки интересно применение метода динамической ползучести. Поскольку различные варианты приборов для этих исследований описаны [46—48], их конструкции здесь рассматриваться не будут. Следует, однако, пояснить, что метод динамической ползучести отличается от метода статической ползучести лишь тем, что к постоянной статической составляющей нагрузки (f0 = const) в образце добавляется циклическая синусоидальная составляющая. При этом возможны два варианта: 1) амплитуда динамической составляющей нагрузки постоянна fa = const; 2) амплитуда динамической составляющей деформации постоянна Кл = const. Удобнее осуществление второго режима, который и был воспроизведен в работах [22, 23, 48, 49].[8, С.160]

статической составляющей деформации52 5i: выносливость проходит через минимум при некотором значении статической составляющей деформации (SN . ). То же явление наблюдалось при утомлении проколотых образцов резин из НК, СКВ, СКС-30, наирита и бутилкаучука23 на машине де Маттиа с частотой 250 циклов в минуту. При испытаниях изменялась величина статической деформации, а величина динамической деформации оставалась по-[6, С.322]

сложными закономерностями динамической усталости (рис. 125). Исследовалась8 зависимость динамической усталости резин от величины статической составляющей деформации растяжения. Резина растягивалась до определенной степени статической деформации ест-, а затем подвергалась многократным дополнительным деформациям. Оказалось, что при таком режиме испытания число циклов до разрушения может не только монотонно уменьшаться, но для некоторых резин может меняться и более сложно. Число циклов до разрушения зависит также от температуры, уменьшаясь с ее повышением сначала быстро, а потом медленно.[6, С.209]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Серков А.Т. Вискозные волокна, 1980, 295 с.
6. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
10. Виноградов Г.В. Реология полимеров, 1977, 440 с.
11. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
14. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную