На главную

Статья по теме: Вследствие ориентации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Электронный парамагнитный резонанс (парамагнитный резонанс, электронный спиновый резонанс) возникает вследствие ориентации неспаренных электронов в магнитном поле так, что их собственный момент количества движения (спин) направлен либо по полю, либо против него. Разность энергий этих двух состояний, или зеема-новских уровней, называется энергией зеемановского расщепления, она равна g jus Н, где Н - напряженность магнитного поля; /^ - магнитный момент электрона (магнетон Бора); g - фактор спектроскопического расщепления (рис. 10.5 а).[8, С.278]

Механические свойства полимера зависят не только от степени кристалличности, но и от ориентации его кристаллов. Например, волокно рами вследствие ориентации с-осей кристаллов целлюлозы почти параллельно оси волокна имеет высокую прочность при растяжении, но заметную хрупкость. В данном случае совершенная ориентация приводит к тому, что в направлении волокна материал становится твердым и прочным, но в поперечном направлении — неустойчивым.[20, С.89]

Полимер дает четкую рентгенограмму кристаллического вещества. При вытягивании на холоду удлинение однородного прозрачного полипараксилилена достигает 600%. При этом вследствие ориентации макромолекул прочность образцов при растяжении заметно возрастает. Полимер, полученный пиролизом, плавится примерно при 427". При нагревании до температуры, близкой к температуре плавления, полипараксилилен не переходит в вязкотекучее состояние, однако приобретает некоторую пластичность. Поэтому, одновременно применяя высокую температуру и давление, можно спрессовывать полимер к бруски и диски.[2, С.352]

Появление и разрастание трещин, ведущих к разрушению материала, возможно в этом случае в результате либо разрушения микрочастицы полисоли, либо разрыва химических связей ее с каучуком. Отрыв частицы от каучука затруднен, так как вследствие ориентации граничного слоя внутренние напряжения распределяются на большое число цепей и для каждой из них оказываются ниже критических, вызывающих их разрыв. Частицы дисперсной фазы, состоящие из трехмер-[15, С.107]

А. с.— следствие естественной анизотропии ценной макромолекулы. Поскольку последняя в известном смысле представляет собой одномерный кристалл, то на отдельных участках макромолекулы (если она изогнута) или на всем ее протяжении (если она вытянута) вследствие ориентации сильных химич. связей (С—С, ('—О, С—Н и др.) существует характерная для кристаллов направленность в состояниях и поведении атомов. Эта направленность состоит прежде всего в определенной конфигурации и ориентации электронных оболочек атомов, что и порождает угловую зависимость (напр., относительно оси цепи) таких свойств, как поляризуемость и механич. упругость (жесткость), приводящую к анизотропии всех свойств молекул. При этом характерные конфигурации полимерных цепей (плоский зигзаг,[23, С.72]

А. с.— следствие естественной анизотропии цепной макромолекулы. Поскольку последняя в известном смысле представляет собой одномерный кристалл, то на отдельных участках макромолекулы (если она изогнута) или на всем ее протяжении (если она вытянута) вследствие ориентации сильных химич. связей (С—С, С—О, С—Н и др.) существует характерная для кристаллов направленность в состояниях и поведении атомов. Эта направленность состоит прежде всего в определенной конфигурации и ориентации электронных оболочек атомов, что и порождает угловую зависимость (напр., относительно оси цепи) таких свойств, как поляризуемость и механич. упругость (жесткость), приводящую к анизотропии всех свойств молекул. При этом характерные конфигурации полимерных цепей (плоский зигзаг,[25, С.69]

Ситуация с аморфными полимерами во многом определяется интенсивностью межцепных взаимодействий, которая в случае неполярных полимеров — в этом несколько парадоксальная аналогия с ориентационной кристаллизацией — существенно возрастает с ростом степени полимеризации именно вследствие ориентации, когда очень длинные цепи расположены параллельно, и энергия когезии может быть рассчитана в одномерном варианте.[10, С.387]

Ориентационная вытяжка полимеров может привести не только к ориентации осей макромолекул в направлении вытяжки, но и к увеличению степени кристалличности полимера. Изменения е' и е", вызванные увеличением кристалличности при вытяжке полимера, могут оказаться большими, чем изменения, обусловленные появлением анизотропии вследствие ориентации. Кроме того, в некоторых случаях ориентация приводит к появлению дополнительных максимумов релаксационных диэлектрических потерь при Т <С 7С, которые не наблюдались у неориентированных полимеров [4, с. 141].[17, С.94]

При очень высоких скоростях деформации может происходить переход текущего полимера в высоко-эластич. состояние или его кристаллизация. Это обусловлено тем, что в процессе течения с высоким градиентом скорости происходит распрямление макромолекул, приводящее к повышению их эффективной жесткости и упорядочению строения системы вследствие ориентации.[25, С.288]

При очень высоких скоростях деформации может происходить переход текущего полимера в высоко-эластич. состояние или его кристаллизация. Это обу-словлено тем, что в процессе течения с высоким градиентом скорости происходит распрямление макромолекул, приводящее к повышению их эффективной жесткости и упорядочению строения системы вследствие ориентации.[23, С.291]

Степень диспергирования волокон в смесях можно улучшить путем повышения вязкости системы и, следовательно, величины сдвиговых напряжений. Так, например, заметное улучшение распределения углеродных волокон в смесях обеспечивается введением аэросила в смеси до введения волокон. В процессе смешения и переработки смесей с волокнистыми наполнителями, вследствие ориентации анизометричных волокон в направлении механических воздействий, образуется анизотропный материал.[3, С.183]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
8. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
9. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
10. Бартенев Г.М. Физика полимеров, 1990, 433 с.
11. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
12. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
13. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
14. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
15. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
18. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
19. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
20. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
21. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
22. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
23. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
24. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
25. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
26. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
27. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную