На главную

Статья по теме: Производстве пластиков

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Эфиры целлюлозы в чистом виде мало применяются для изготовления пластических масс, главным образом они служат основой для последних. В производстве пластиков к эфирам целлюлозы—основе или связке—обычно добавляют различные другие вещества,—из них составляют композиции. Как уже указывалось в введении, одним из важных преимуществ пластических масс является их способность путем добавок и других приемов разнообразить и изменять свои свойства в соответствии с назначением материала и предъявляемыми к последнему требованиями. Одни вещества добавляют с целью повышения пластичности эфира целлюлозы для осуществления формования изделий при удобной и приемлемой температуре—это так называемые пластификаторы или мягчители; другие, наоборот, с целью повышения теплостойкости и твердости изделия (некоторые наполнители органические и, неорганические); другие—для повышения электроизоляционных свойств. Тесное соединение эфира с пластификатором, набухание его в последнем с образованием сплошной студнеобразной массы (желе) называется желатинизацией. Частично желатинизация осуществляется при мешке в мешателе.[8, С.83]

Толчком к широкому распространению уретановых эластомеров в мире послужила научная проработка химии и технологии полиуретанов в Европе (конец 30-х - начало 40-х годов). Первыми эластомерами были вулколлан ("Фарбениндастри", ФРГ) и вулкапрен (Ай-Си-АЙ, Великобритания). 'Эти два типа полиуретанов различались принципами переработки их в изделия - литье и вальцевание, - что определило промышленные направления производства литьевых и вальцуемых эластомеров. Вулколлан и вулкапрен являются сшитыми системами. Позднее были раз-рабованы новые эластомеры термопластичной природы (ТЭП). Создание терцоэластопластов определило внедрение более прогрессивной технологии переработки, а именно: литье под давлением, метод, принятый в производстве пластиков. Затем были синтезированы ТЭП специально для изготовления деталей экструдированием и каландрованием.[2, С.1]

Благодаря значению хлористого винила в производстве пластиков было проведено большое число работ по его получению и полимеризации.[1, С.190]

Отверждение нолифункциональиых мономеров или олигомеров, осуществляемое но механизмам полимеризации или иолпкондснсации, наиболее широко используется для получения густосетчатых полимеров в производстве пластиков, лаков, клеев, герметиков. Поли-функциональныо олигомеры все шире применяются и в производстве редкосетчатых эластомеров (см., напр., Жидкие каучуки, Полиуретаны).[4, С.326]

Отверждение полифункциональных мономеров или олигомеров, осуществляемое по механизмам полимеризации или поликонденсации, наиболее широко используется для получения густосетчатых полимеров в производстве пластиков, лаков, клеев, герметиков. Полифункциональные олигомеры все шире применяются и в производстве редкосетчатых эластомеров (см., напр., Жидкие каучуки, Полиуретаны).[6, С.326]

Высокомодульные нити из ПВС благодаря низкой плотности, высокой адгезии ко многим связующим, прочности и высокому модулю упругости являются прекрасными армирующими наполнителями для пластиков. Наилучшие результаты получаются в производстве пластиков на основе эпоксидных, фенольных, эпокси-фенольных связующих. Новые материалы получены также при армировании высокомодульными нитями из ПВС полиолефинов и др. термопластов. Для упрочнения пластиков можно использовать также карбо-низованные П. в. (т. н. углеродные нити). См. также Органоволокнит.[3, С.399]

Высокомодульные нити из ПВС благодаря низкой плотности, высокой адгезии ко многим связующим, прочности и высокому модулю упругости являются прекрасными армирующими наполнителями для пластиков. Наилучшие результаты получаются в производстве пластиков на основе эпоксидных, фенольных, эпокси-фенолышх связующих. Новые материалы получены также при армировании высокомодульными нитями из ПВС полиолефинов и др. термопластов. Для упрочнения пластиков можно использовать также карбо-низованные П. в. (т. н. углеродные нити). См. также Органоволокнит.[5, С.397]

С. в., главным образом непрерывные, в виде жгутов (ровингов), комплексных нитей, лент, тканей различного плетения, нетканых материалов и др. применяют в качестве армирующих наполнителей в производстве стеклопластиков (см. также Наполнители пластмасс). Так, при использовании высокотемпературоустойчивых кварцевых и кремнеземных волокон (95—99% Si02), характеризующихся высокими теплостойкостью (т. пл. 1600—1700°С), водостойкостью и электрич. свойствами (уд. объемное электрич. сопротивление 1015 ом -см), низкой диэлектрич. проницаемостью (3,7—4,0) в интервале темп-р 20—700°С, получают теплозащитные эр-розионноустойчивые пластики, а также нагревостой-кую электроизоляцию. Полупроводящие С. в., к-рые могут быть получены из стекол с высоким содержанием окислов меди и серебра, из ванадийсодержащих стекол (уд. поверхностное электрич. сопротивление 102— 1010 ом), применяют для получения электропроводящих пластиков. Специальные волокна, напр, натрийбороси-ликатного или многосвинцового состава, используют в производстве пластиков, обладающих соответственно низкой (4) или высокой (12—16) диэлектрич. проницаемостью. Капиллярные С. в., имеющие коэфф. капиллярности 0,6—0,7, плотность 1,6 —1,8 г/см3, применяют для получения пластиков, характеризующихся повышенными теплофизич., диэлектрич. и радионрозрачными свойствами. В производстве конструкционных пластиков, работающих на растяжение или сжатие, применяют высокопрочные (прочность при растяжении 4000— 5000 Мн/м2, или 400—500 кгс/мм2) и выеокомодулыше (модуль упругости 90—120 Гн/м-, или 9 000 — 12 000 кгс/мм2) С. в.[4, С.256]

С. в., главным образом непрерывные, в виде жгутов (ровингов), комплексных нитей, лент, тканей различного плетения, нетканых материалов и др. применяют в качестве армирующих наполнителей в производстве стеклопластиков (см. также Наполнители пластмасс). Так, при использовании высокотемпературоустойчивых кварцевых и кремнеземных волокон (95—99% SiO2), характеризующихся высокими теплостойкостью (т. пл. 1600—1700°С), водостойкостью и электрич. свойствами (уд. объемное электрич. сопротивление 1015 ом -см), низкой диэлектрич. проницаемостью (3,7—4,0) в интервале темп-р 20—700°С, получают теплозащитные эр-розионноустойчивые пластики, а также нагревостой-кую электроизоляцию. Полупроводящие С. в., к-рые могут быть получены из стекол с высоким содержанием окислов меди и серебра, из ванадийсодержащих стекол (уд. поверхностное электрич. сопротивление 102— 1010 ом), применяют для получения электропроводящих пластиков. Специальные волокна, напр, натрийбороси-ликатного или многосвинцового состава, используют в производстве пластиков, обладающих соответственно низкой (4) или высокой (12—16) диэлектрич. проницаемостью. Капиллярные С. в., имеющие коэфф. капиллярности 0,6—0,7, плотность 1,6—1,8 г/см3, применяют для получения пластиков, характеризующихся повышенными теплофизич., диэлектрич. и радиопрозрачными, свойствами. В производстве конструкционных пластиков, работающих на растяжение или сжатие, применяют высокопрочные (прочность при растяжении 4000— 5000 Мн/м2, или 400—500 кгс/ммг) и высокомодульные (модуль упругости 90—120 Гн/м?, или 9 000—12 000 кгс/мм*) С. в.[6, С.256]

5. Что такое гомогенизация и желатинизация в производстве пластиков?[8, С.98]

ния природных асфальтов. Однако это не снижает значения природных битумов, в частности, высокоплавких и низкоплавких асфальтов, так как они обладают высокой связывающей способностью и имеют поэтому преимущество в дорожном строительстве и в производстве пластиков.[7, С.509]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Блаут Е.N. Мономеры, 1951, 241 с.
2. Сотникова Э.Н. Производство уретановых эластомеров в странах Европы и Японии, 1980, 60 с.
3. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
4. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
5. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
6. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
7. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
8. Седлис В.И. Эфиры целлюлозы и пластические массы, 1958, 116 с.

На главную