На главную

Статья по теме: Совместном применении

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При совместном применении пигментов и Н. л. м. с частицами различной формы и размера достигается более равномерное распределение частиц одного материала между частицами другого и увеличивается плотность их упаковки, а, следовательно, и т. наз. объемная концентрация пигмента в пленке. Благодаря атому уменьшается расход дорогих пленкообразующих и улучшается качество пленок, в частности повышается их атмосферостойкость и прочность. Последнее особенно важно для шпатлевок и грунтовок, т. :л. покрытия из этих материалов обычно шлифуют. Для увеличения объемной концентрации пигмента наиболее широко применяют тяжелый и легкий шпат, доломит, мел, тальк, слюду, кварц. Оптимальное содержание каждого II. л. м. устанавливают по данным маслоемкости его композиций с пигментами в данном пленкообразующем.[10, С.172]

При совместном применении пигментов и Н. л. м. с частицами различной формы и размера достигается более равномерное распределение частиц одного материала между частицами другого и увеличивается плотность их упаковки, а, следовательно, и т. наз. объемная концентрация пигмента в пленке. Благодаря этому уменьшается расход дорогих пленкообразующих и улучшается качество пленок, в частности повышается их атмосферостойкость и прочность. Последнее особенно важно для шпатлевок и грунтовок, т. к. покрытия из этих материалов обычно шлифуют. Для увеличения объемной концентрации пигмента наиболее широко применяют тяжелый и легкий шпат, доломит, мел, тальк, слюду, кварц. Оптимальное содержание каждого Н. л. м. устанавливают по данным маслоемкости его композиций с пигментами в данном пленкообразующем.[16, С.170]

Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное Вещество. Даже если в организме происходит отщепление «лекарственной группы», поведение и функции полимерной основы м. б. изыми, чем у исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фармакология, действия собственно полимера практически не наблюдается и его можно считать биоинертзым. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозамепителп декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилэвого спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получению эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакология, препаратов прч совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-ментоорганич. полимеров: полисилоксаною, полимеров,[11, С.372]

Ф. а. п., у к-рых фармакологически активные группы связаны с полимерной структурой химич. связями, следует рассматривать без деления на полимер-носитель и лекарственное вещество. Даже если в организме происходит отщепление «лекарственной группы», поведение и функции полимерной основы м. б. иными, чем у •исходного носителя. Роль носителя или пролонгатора не является пассивной и в случаях простых композиций. При применении лекарств в смеси с полимерами (в виде р-ров, гелей, суспензий и др.) заметного фарма-кологич. действия собственно полимера практически не наблюдается и его можно считать биоинертным. Однако физиологич. активность полимера не проявляется из-за того, что незначительны его абсолютные количества (дозы), или она незаметна на фоне действия основного лекарственного вещества. Установлено, что природа полимерной цепи существенно влияет на проявление действия лекарственного вещества, используемого в смеси с р-ром полимера. Так, плазмозаменители декстран и поливинилпирролидон в смеси с гепарином не оказывают заметного действия на свертывание крови по сравнению с физиологич. р-ром, содержащим гепарин. Смесь же гепарина с р-ром поливинилового спирта дает выраженное замедление свертывания. Создание смесей полимеров (или их конц. р-ров) с лекарственными веществами различной природы приводит к получе-. нию эффективных лечебных средств для внутреннего (таблетки, капсулы, р-ры) и наружного (мази, р-ры, аэрозоли, пленки) применения. При этом в ряде случаев физиологич. активность полимеров проявляется в активизации процессов всасывания и проникновения лекарственных средств через слизистые оболочки, кожу и др. Механизмы действия полимеров-носителей и причины влияния их структуры на физиологич. активность находящихся в смеси с ними низкомолекулярных соединений еще не выяснены и интенсивно изучаются. В фармацевтич. практике полимеры широко используют как основу мазей, таблеток или покрытий (см. Полимеры в медицине). В качестве гидрофобизаторов применяют различные нетоксичные кремнийорганич. полимеры. Накоплено много экспериментальных данных о биологической (физиологической) активности полимеров, об их влиянии на активность и сроки действия ряда фармакологич. препаратов при совместном применении, а также об особенностях свойств лекарственных веществ, ковалентно связанных с полимерами. Однако систематич. исследований, позволяющих связать проявление и специфичность физиологич. активности со структурными особенностями полимеров, проведено еще недостаточно, и они в большинстве случаев носят качественный характер. Следует отметить возрастающий интерес к физиологич. активности эле-ментоорганич. полимеров: полисилоксанов, полимеров,[17, С.372]

Рис. 121. Синергизм защитного действия при совместном применении в качестве антиоксидантов в полимерах аминов и сульфидов[9, С.203]

Наиболее практически ценные результаты получаются при совместном применении резорцино-формальдегидной смолы и сажи (табл. 16),- что способствует повышению сопротивления раздиру, эластичности по отскоку, сопротивлению истиранию и снижению теплообразования. Прочность и модули вулканизатов не изменяются.[7, С.117]

Достигаемый эффект от действия ДТДМ может быть еще более значительным при его совместном применении с бас-(сульфен)-амидными производными I в качестве ускорителей вулканизации [42].[8, С.117]

Иногда наблюдается очень хорошая корреляция между данными ТГА и ТИА. Однако, хотя эти методы (особенно при их совместном применении) позволяют получить обширную информацию о реакциях термического разложения полимеров, ее можно рассматривать только как предварительную, поскольку она не содержит прямых доказательств о природе протекающих химических реакций. Например, ТГА при высокой температуре не регистрирует реакций гидролиза, сопровождающихся образованием большого количества фрагментов разрушенных макромолекул.[5, С.396]

Дибутилдилауринат олопа — • термостабилизатор полипшшлхло-рида--эффсктинно защищает его при температуре переработки до 165 РС. Придает композициям высокую прозрачность. Эффективность повышается при совместном применении с солями кадмия и бярия.[4, С.362]

Для определения влияния совместимости антиоксадантов с полимером на величину синергического эффекта монофенолы и сульфиды (зфиры тиодипропиоыовой кислоты), представленные в работе [?>], была проверены при совместном применении в полипропилене (температура 200°С, давление кислорода 300 мм рт.ст.).[14, С.83]

В первый период освоения производства стереорегулярного изопренового каучука в США было рекомендовано применять для стабилизации алкилпроизводные гидрохинона (дибуг) в комбинации с производными /г-фенилендиамина [53]. При совместном применении этих двух антиоксидантов проявляется эффект синергизма [20]. В настоящее время алкилпроизводные гидрохинона не находят широкого применения для стабилизации синтетических каучуков.[1, С.638]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
7. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
8. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
9. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
10. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
13. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
14. Бурмистров Е.Ф. Синтез и исследование эффективности химикатов для полимерных материалов, 1974, 195 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
16. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную