В этой главе мы переходим к изучению равновесной статистической термодинамики макромолекулярных цепей — полимеров. Этому предмету посвящены многочисленные исследования, продолжающиеся в течение нескольких десятилетий. Изложению наиболее существенных результатов посвящен ряд монографий. Большой вклад в исследование конфигурационной статистики полимеров, внесенный ленинградской школой, и весьма полный обзор достижений других советских и иностранных авторов нашел свое отражение в монографиях [14, 15]. В первых классических работах Куна [16], Гута и Марка [17] полимерные цепи считались состоящими из статистически независимых элементов, что аналогично рассмотрению идеального газа в теории газов. Учет коллективных эффектов в приближении взаимодействия ближайших соседей был сделан' в работе Волькенштейна и Птицына [18]. Их методу предшествовали методы Изинга [19], Крамерса и Ванье [20]. Задача, которую мы ставим перед собой, ограничивается тем, каким образом задачи конфигурационной макромолеку-лярной статистики могут быть выполнены методом, изложенным в предыдущей главе.[9, С.50]
Теперь мы приступаем к систематическому рассмотрению статистической термодинамики абстрактной одномерной модели. Это позволит нам сформулировать математические методы, приложению которых к реальным полимерам посвящена следующая глава.[9, С.15]
Следующим моментом стандартного рассуждения, приводящего к построению статистической термодинамики, является предельный переход к бесконечному числу звеньев (или треугольников) полимера: N -+ оо. Реальный полимер состоит из очень большого, но конечного числа звеньев, и получаемые формулы, в которые входит N, следует понимать как асимптотические выражения. Напомним, что .при использовании канонического ансамбля вовсе не требуется стремление N к бесконечности для получения конфигурационного интеграла в форме (2.26), но для получения уравнения состояния и термодинамических функций, не зависящих от условий на концах цепи (краевых эффектов), такое предположение необходимо. В обобщенных координатах (2.7), введенных в § 1 настоящей главы, уравнение состояния принимает знакомую нам форму. (1.16)[9, С.62]
Теплоемкость идеальных газов и кристаллов может быть вычислена методами статистической термодинамики и квантовой физики. Для жидкостей, особенно для полярных и с несферическими частицами, этого сделать нельзя. Поэтому не существует теоретических уравнений, описывающих теплоемкость аморфных и кристаллических полимеров и их расплавов.[2, С.127]
Статистическое рассмотрение высокоэластической деформации линейных полимеров. Природа высокоэластичности на молеку-лярно-кинетическом уровне рассматривается в рамках статистической термодинамики. В простейших статистических теориях полимерную молекулу моделируют в виде бестелесной свободно-сочлененной цепи, отдельные звенья которой подвергаются хаотическому тепловому движению. Статистический расчет вероятности того, что для достаточно многозвенной свободно-сочлененной цепи, один из концов которой закреплен в произвольной точке, а другой находится в элементарном объеме dQ, отстоящем от этой точки на расстояние г, приводит к функции распределения Гаусса:[5, С.145]
В общем виде для полимеров задача сводится к нахождению суммы состояний молекул полимера в адсорбированном состоянии и в растворе. Поскольку сумма состояний, как известно из статистической термодинамики, связана с термодинамическими функциями, то можно найти выражения для химического потенциала полимерной молекулы на поверхности адсорбента и в растворе, а затем — и уравнение изотермы адсорбции.[8, С.106]
Наконец, следует сказать, что задача описания состояния системы путем осреднения по бесконечно большому времени является частной проблемой статистической механики и составляет предмет равновесной статистической термодинамики. В своей стандартной схеме рассуждений статистическая механика не имеет дела с осреднением по времени непосредственно, а использует осреднение по ансамблю Гиббса. В частном случае равновесной статистической термодинамики оба подхода считаются эквивалентными. Впрочем, совершенно строгого доказательства их эквивалентности пока не существует.[9, С.12]
В истории развития физикохимии полимеров самым крупным достижением является безусловно создание представлений о существовании длинных цепных макромолекул, обладающих гибкостью. Именно эти представления позволили применить к анализу деформационных свойств эластомеров законы статистической термодинамики и благодаря этому установить количественную связь между структурой макромолекулярного клубка и механическими свойствами полимера. Установление наиболее простой зависимости возможно лишь для идеально-упругого эластомера, для которого значение Д/ пренебрежимо мало и деформация осуществляется настолько медленно, что каждый раз успевает возникнуть равновесное значение деформации при данной величине действующего напряжения.[6, С.111]
Следовательно, равновесная гибкость связана со способностью полимерных цепей принимать различные конформаций. Переходы между конформациями осуществляются в результате внутреннего вращения (микроброунова движения). Поскольку макромолекула хоть и малая система, но все же подчиняется принципам статистической термодинамики, она чаще принимает энергетически наиболее выгодные конформаций.[7, С.43]
Макромолекула находится в среде (газ, жидкость) с заданной температурой (система в термостате). Как и ранее мы обсуждаем модель со свободносочлененными сегментами, где п и / — число и длина сегментов в модели макромолекулы. Так как п велико, то и число степеней свободы у макромолекулы велико. Поэтому к этой системе применимы уравнения статистической термодинамики без поправок на малость системы.[3, С.141]
Макромолекула находится в среде (газ, жидкость) с заданной температурой (система в термостате). По-прежнему рассматривается модель со свободно сочлененными сегментами, где п и / — соответственно число и длина сегментов в модели макромолекулы. Так как п велико, то велико и число степеней свободы у макромолекулы. Поэтому к этой системе применимы уравнения статистической термодинамики.[4, С.102]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.