На главную

Статья по теме: Ускоренных испытаний

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Методы ускоренных испытаний озонного растрескивания оказались важными для оценки свойств различных резин и защитных добавок, так как они очень быстро дают необходимую информацию. В некоторых случаях, например при испытании эффективности действия антиозонантов, не всегда получают хорошую корреляцию между данными испытаний в атмосферных и в лабораторных условиях. Поэтому тщательные испытания в естественных условиях все еще остаются наиболее ценным методом исследования, если требуется получение данных о пригодности материалов в реальных условиях эксплуатации. Ускоренные лабораторные испытания можно с большой пользой применять для более детальных исследований, например при оценке эффективности действия защитных агентов.[11, С.141]

Одной из целей ускоренных испытаний на старение является установление гарантийного срока хранения, т. е. срока, в течение которого изделие сохраняет работоспособность при хранении в естественных условиях. Основным принципом количественного определения гарантийных сроков хранения, впервые предложенным для светоозонного старения, является принцип экстраполяции скоростей старения с высоких температур до температуры хранения.[2, С.131]

Линейная экстраполяция результатов ускоренных испытаний к концентрациям NO2> реально существующих в атмосфере (1-5 ррт), предсказывает, что свойства этих полимеров будут сохраняться в течение длительного времени. Первые исследования взаимодействия NO2 с ПЭ и ПП были выполнены Огиха-рой [7, 8] при температурах 298-383 К и давлении NO2 20 кПа. Установлено, что при комнатной температуре NO2 реагирует с изначально присутствующими в ПЭ двойными >С=С< связями с образованием динитросоединений и нитронитри-тов по следующей схеме:[12, С.188]

В ряде случаев для прогнозирования свойств клеев используют результаты ускоренных испытаний стойкости к воздей-•ствиям высокой влажности как при комнатной, так и при повышенной температуре, солевого тумана, а также к циклическому изменению температур и влажности и других факторов. Однако при таких испытаниях соединения находятся в более жестких, чем при эксплуатации, условиях. Поэтому и свойства соединений при ускоренных испытаниях могут изменяться качественно иначе, чем в реальных условиях. Например, прочность при сдвиге соединений на эпоксидно-полиамидных клеях, которые являются в настоящее время наиболее прочными (тсд = 50 МПа), ч процессе ускоренных испытаний после пребывания в воде в течение 30 сут снижается примерно на 60%, а в лабораторных условиях сохраняется на одинаковом уровне хранения в течо-ние 11 лет [36]. Из этого следует, что независимо от результатов ускоренных испытаний (а они весьма ценны для определи ния относительности стойкости соединений), целесообразно ч тех случаях, когда это возможно, проводить длительные ист тания в условиях, имитирующих условия хранения и эксплуат ции соединений.[6, С.150]

Сроки хранения и работы эластомерных уплотнений прогнозируют на основе результатов ускоренных испытаний при повышенных температурах. Полученные результаты экстраполируют на рабочие условия, используя уравнения химических реакций и диффузии. Наблюдения за процессом старения различных полимерных материалов показали, что под воздействием среды происходят диффузионный обмен, приводящий к изменению объема и состава компонентов материала уплотнений, и химические реакции (преимущественно окислительные), приводящие к частичному изменению природы полимерных цепей и структурным изменениям.[2, С.169]

Зависимости времени жизни полимерной изоляции от напряженности поля, температуры и частоты используются для расчета (прогнозирования) срока службы по результатам ускоренных испытаний. Например, для полимерных пленок в случае постоянного электрического поля такое прогнозирование может быть осуществлено с помощью соотношения:[9, С.164]

Образцы, полученные литьем под давлением одного из исследованных прозрачных насыщенных ударопрочных акрилатов, выдерживали в течение 2000 ч в условиях ускоренного старения (ксенон-дуговой везерометр, мощность 6000 Вт). Показателями устойчивости полимеров в условиях ускоренных испытаний на погодостойкость служили: физико-механические свойства, внешний вид и цвет. Изменение прочностных характеристик при ускоренном старении показано на рис. 3. Предел прочности при растяжении и ударную вязкость по Изоду определяли периодически через 400 ч. Установлено, что в течение 2000 ч изделие сохраняет удовлетворительные показатели прочностных свойств. Внешний вид также остается[10, С.180]

Рассмотренные результаты свидетельствуют о возможности корреляции между ускоренным (лабораторным) и естественным старением пластмасс, поскольку форма временной зависимости коэффициента старения сохраняется. Этот вывод согласуется с данными по старению капроновых тканей (см. рис. 6.2), а также с опытами Камала [243], который на основании ускоренных испытаний в везирометре десяти типов пластмасс проследил линейную зависимость изменения логарифма механических свойств (с) от времени:[8, С.202]

Для того чтобы установить влияние данного агрессивного газа на рассматриваемый полимер, реакция обычно исследуется при концентрациях поллютанта, существенно превосходящих реально существующие в загрязненной атмосфере. Полученные таким образом результаты, как правило, линейно экстраполируются к реальным концентрациям поллютанта в атмосфере. Такой метод является априори неоднозначным в связи с тем, что роль отдельных стадий в едином процессе старения может изменяться в зависимости от условий ускоренных испытаний.[12, С.187]

Для описания механического поведения гомогенных полимеров применена наследственная теория Больцмапа — Вольтерра; изложены экспериментальные методы построения ядер ползучести и релаксации. Большое внимание уделено прогнозирующим (ускоренным) методам испытаний, использующим различные виды аналогий. Приведены теории прочности и длительной прочности; здесь при изложении критериев прочности предпочтение отдано наиболее последовательной тешюрно-подиномиальной формулировке, в теории длительной прочности даны важные для практики методы ускоренных испытаний.[1, С.6]

Механические свойства. К наиболее выдающимся свойствам ПВФ следует отнести высокие механическую прочность, твердость, стойкость к истиранию и многократным перегибам, атмо-сферостойкость, стойкость к маслам и смазкам, загрязнениям, гидрофобность. Сопротивление ПВФ к многократным перегибам характеризуется следующими данными: число перегибов пленки при 25 °С составляет 70 000, при — 17°С 40 000. Разрушающее напряжение и модуль упругости ПВФ мало изменяются после выдержки образца в среде водяного пара в течение 1500 ч. Высокие прочностные свойства ПВФ существенно не изменяются после воздействия жестких атмосферных условий, УФ-лучей как в -естественных условиях, так и при длительной экспозиции в приборах для ускоренных испытаний. Пленка ПВФ после 25 лет выдержки в атмосферных условиях не обесцвечивается, остается гибкой и на 50% сохраняет начальную прочность.[7, С.77]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. Сагалаев Г.В. Справочник по технологии изделий из пластмасс, 2000, 425 с.
4. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
5. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
6. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
7. Пашин Ю.А. Фторопласты, 1978, 233 с.
8. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
9. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
10. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
11. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
12. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.

На главную