На главную

Статья по теме: Увеличению жесткости

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Замена атомов водорода в полиэтилене полярными атомами или группами атомов приводит к увеличению внутри- и межмолекулярного взаимодействия, повышению потенциального барьера свободного вращения, увеличению жесткости цепи и вследствие этого к повышению температуры стеклования. Так, температура стеклования полиэтилена примерно 40°С, поливинилхлорида 95 °С, полиакрилонитрила 80°С, поливинилового спирта 85°С. Введение в молекулу полиэтилена неполярных групп большого размера создает, вероятно, стерические затруднения свободному вращению, что также приводит к повышению температуры стеклования (Гс полистирола 81°С).[2, С.303]

Хотя полиэфиры из окиси триметилена и ее симметричных гем-дизамещенных производных кристалличны, полимер из 3-метнл-триметиленоксида пекристалличен [55]. Замещение двух групп в положении 3 приводит к увеличению жесткости цепи, как было описано ранее[4, С.305]

Представляло значительный интерес исследовать форму молекул полиакриловой кислоты, введя в ее боковые группы одновалентные катионы, способствующие увеличению степени диссоциации карбоксильных групп. В этом случае можно ожидать, что внутримолекулярные электростатические силы отталкивания между заряженными звеньями цепи приведут к увеличению жесткости и к распрямлению молекулярных цепочек. Для этого были исследованы следующие соли полиакриловой кислоты: полиакрилат натрия, цезия и соли четвертичных аммониевых оснований. Была изучена зависимость вязкости полиакрилатов от степени нейтрализации. Зависимость для всех[11, С.112]

В процессе теплового движения конформацни макромолекулы изменяются. Одни конформацин в другие переходят путем внутреннего вращения звеньев вокруг единичных связей. В реальной макромолекуле вполне свободного вращения нет, так как при сближении боковых групп между ними возникает отталкивание, и появляются потенциальные барьеры, что приводит к увеличению жесткости цепи по сравнению с цепью, у которой имелось бы свободное вращение.[6, С.153]

При вулканизации ремней и лент с 3—5 прокладками удельное давление на поверхность изделия должно составлять 18—25кгс/см?; при вулканизации ремней и лент с большим числом прокладок — 20 4 30 кгс/см2. Более высокое давление при вулканизации без линеек вызывает выдавливание резиновой смеси из заготовки, а также нарушение структуры и прочности ткани, что приводит к увеличению жесткости и к понижению прочности ремня.[3, С.534]

Старение в атмосферных условиях полимеров, особенно таких, как-натуральный и синтетические каучуки, связано с одновременным воздействием на них ряда факторов, из которых наиболее важными являются кислород и свет. Химическое действие этих факторов было рассмотрено в гл. 4 и 2 соответственно. Их влияние на физические свойства материала при статических условиях обычно сводится к увеличению жесткости, а в случае крайне длительных экспозиций — к образованию сетки тонких трещин. Совершенно иначе происходит растрескивание в растянутом каучуке. В этом случае трещины возникают раньше, чем появятся какие-либо другие признаки старения. Эти трещины всегда перпендикулярны направлению растяжения и образуются в тени или даже в темноте так же быстро, как и при ярком солнечном освещении. Вильяме [40] первый отметил, что возникновение этих трещин происходит в результате действия озона.[10, С.204]

В случае систем, содержащих большое количество дисперсных наполнителей, их частицы образуют, как и в наполненных резинах, непрерывную коагуляцион-ную структуру, пронизывающую весь объем. Т. обр., наполненная система состоит из первичной структуры, к-рую образуют частицы наполнителя, и вторичной, создаваемой макромолекулами, ориентированными на поверхности этих частиц и образующими поверхностный слой с измененными свойствами. Ото приводит к повышению прочности и одновременному увеличению жесткости композиции в тем большей степени, чем выше дисперсность и асимметрия частиц наполнителя. Предельно возможное Н. определяется из условий сохранения формуемости материала и минимальной толщины граничного слоя. Оно может быть повышено при увеличении размеров частиц наполнителя или изменения распределения частиц по размерам. На этом основано, в частности, получение таких высокоиа-полненных материалов как графитопласты, аман (см. Антифрикционные полимерные материалы), полимер-бетон.[12, С.166]

В случае систем, содержащих большое количество дисперсных наполнителей, их частицы образуют, как и в наполненных резинах, непрерывную коагуляцион-ную структуру, пронизывающую весь объем. Т. обр,, наполненная система состоит из первичной структуры, к-рую образуют частицы наполнителя, и вторичной, создаваемой макромолекулами, ориентированными на поверхности этих частиц и образующими поверхностный слой с измененными свойствами. Это приводит к повышению прочности и одновременному увеличению жесткости композиции в тем большей степени, чем выше дисперсность и асимметрия частиц наполнителя. Предельно возможное Н. определяется из условий сохранения формуемости материала и минимальной толщины граничного слоя. Оно может быть повышено при увеличении размеров частиц наполнителя или изменения распределения частиц по размерам. На этом основано, в частности, получение таких высоконаполненных материалов как графитопласты, аман (см. Антифрикционные полимерные материалы), полимер-бетон.[14, С.164]

В процессе теплового движения макромолекулы могут находиться в различных конформациях. Переход одних конформаций к другим происходит путем внутреннего вращения звеньев вокруг единичных связей. В реальной молекуле вполне свободного вращения нет, так как в самих цепях имеются боковые привески, при сближении которых силы притяжения переходят в силы отталкивания. Кроме того, торможение свободного вращения происходит и при взаимодействии звена цепи с окружающими его звеньями других цепей полимеров. Следовательно, при вутреннем вращении происходит торможение из-за наличия потенциальных барьеров, что приводит к увеличению жесткости цепи по сравнению с цепью, у которой имелось бы свободнее вращение (высокие температуры).[1, С.84]

Тот факт, что в полимерных смесях и в блоксополимерах происходит фазовое расслоение двух компонентов, уже давно был известен, так же, как и важность этого явления для проявления характерных механических свойств. Но изучение структуры таких смесей стало возможным только благодаря ТЭМ, хотя при этом остается серьезная проблема достижения контраста между двумя фазами. Эта сложность была преодолена в 1965 году Като, который обнаружил, что тетраоксид осмия избирательно окрашивает макромолекулы, содержащие двойные углерод-углеродные связи, например молекулы полибутадиена и полиизопрена. Кроме того, тетраоксид осмия способствует увеличению жесткости эластомерной фазы, что позволяет получать ультратомированием образцы толщиной до 50 нм. Для окрашивания образец выдерживают в парах тетраоксида осмия в течение недели или в его 1 %-ном водном растворе 12 часов.[5, С.356]

Процессы растрескивания под действием окружающей среды связаны с большим числом переменных факторов, относящихся как к полимеру, так и к окружающей его среде. Такг важную роль играет средний молекулярный вес. Установлено, что с уменьшением молекулярного веса возрастает склонность к растрескиванию. Действительно, более длинные полимерные цепи пересекают большее количество кристаллитных областей, образуя как бы мостики, проходящие через границы этих областей и затрудняющие прорастание трещин. Именно этим можно объяснить, почему полипропилен обладает повышенным по сравнению с полиэтиленом сопротивлением растрескиванию. В среднем молекулярный вес полипропилена выше, чем полиэтилена. Молекулярно-весовое распределение также сильно влияет на напряжения растрескивания. Это может быть доказано испытанием на растрескивание образцов полиэтилена, содержащих различные количества низкомолекулярных, фракций. По мере увеличения содержания низкомолекулярных фракций повышается склонность к растрескиванию. Аналогичное влияние оказывает увеличение степени кристалличности. Так, если полиэтилен быстро охладить, то напряжения растрескивания уменьшаются. Если же охлаждение проводить медленно, так чтобы существовали благоприятные условия для кристаллизации, то склонность к растрескиванию увеличивается. Наряду с этим определенное влияние оказывает размер кристалла. Рост кристаллов способствует увеличению жесткости материала и облегчает наступление растрескивания, так как при одной и той же деформации напряжения тем больше, чем жестче материал. Конечно» растрескивание может происходить и в отсутствие внешней силы, поскольку при литье под давлением или любом другом методе переработки в изделиях могут возникать внутренние напряжения. Влияние ориентации, возникающей в материале при переработке, уже рассматривалось на примере экструзии труб, при которой полимер ориентировался в продольном направлении, тем самым способствуя образованию в образце трещин.[9, С.188]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Белозеров Н.В. Технология резины, 1967, 660 с.
4. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
8. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
9. Северс Э.Т. Реология полимеров, 1966, 199 с.
10. Грасси Н.N. Химия процессов деструкции полимеров, 1959, 252 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
12. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
15. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
16. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную