На главную

Статья по теме: Значением молекулярной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Оперировать просто значением молекулярной массы или величинами, ей пропорциональными, представляется нецелесообразным, поскольку они отображают состояние полимера в данный момент, а не степень деструкции, т. е. ничего не[4, С.73]

Дальнейшее увеличение напряжения сдвига приводит к тому, что и другие макромолекулярные клубки, уже с меньшим значением молекулярной массы становятся упругонапряженны-ми и также пефестают участвовать в сегментальном движении. Это приводит к дальнейшему постепенному снижению вязкости с ростом напряжения сдвига.[2, С.165]

Прочность высокополимера мало зависит от характера моле-кулярномассового распределения, а в основном определяется среднемассовым значением молекулярной массы. Иначе говоря, полидисперснссть мало сказывается на механических свойствах полимеров с большой молекулярной массой. Для полимеров с низкой и средней молекулярной массой полидисперсность существенно сказывается на прочности6.[5, С.129]

В этом одно из принципиальных отличий полимера от низкомолекулярного вещества, так как последнее характеризуется совершенно определенным значением молекулярной массы. Это относится и к природным, и к синтетическим полимерам.[2, С.8]

Наиболее полное представление о молекулярном составе полимера дает кривая распределения по молекулярным массам. Молекулярно-массовое распределение (ММР) полимера представляет собой зависимость содержания в нем численной NI или массовой а/ доли макромолекул с данным значением молекулярной массы от молекулярной массы (рис. 1.3).[3, С.17]

Значение Мс может изменяться в зависимости от природы полимерной цепи в десятки раз. Отсюда следует, что как условия проявления аномалии вязкости, так и перехода полимеров из текучего в высокоэластическое состояние (и соответственно потеря текучести) определяются не абсолютным значением молекулярной массы, а отношением М1МС.[6, С.192]

Основные результаты' нескольких десятков работ, посвященных экспериментальному изучению- зависимости начальной вязкости от молекулярной массы полимеров М, можно сформулировать следующим образом. Существуют две области молекулярных масс, разделенных характерным для каждого полимергомологического ряда критическим значением молекулярной массы Мс. В обеих областях значений молекулярной массы зависимость T]O (M) может быть представлена степенным законом, а именно:[6, С.181]

Прежде чем охарактеризовать роль молекулярных цепей в ударном нагружении, рассмотрим разрушение полимеров, считающихся жесткими в нормальных условиях (например, ПЭВП, ПВХ, ПП, ПА). Расщепление материала трудно получить путем изгиба, оно наблюдается лишь на надрезанных образцах с низким отношением (LS/D) или при высокой скорости нагружения (удар). В образцах ПЭВП с чрезвычайно высоким значением молекулярной массы (Mw?> 106 г/моль) совсем не происходит расщепления материала. Поверхность разрушения, показанная на рис. 8.25, была получена Гаубе и Каушем [106] путем ударного нагружения при 20°С стандартного бруска ПЭВП с ножевым надрезом. На поверхности хорошо видны морфологические структуры трех видов:[1, С.272]

Основным следствием механодеструкции является уменьшение молекулярной массы, происходящей по определенному закону. На рис. 20 приведены зависимости молекулярной массы ряда карбо-и гетероцепных полимеров от продолжительности измельчения в шаровых мельницах при низких температурах в атмосфере азота [197, 198]. Из рисунка видно, что существует четкая зависимость между временем измельчания, т. е. временем механического воздействия, и значением молекулярной массы различных полимеров. Эта зависимость связана с особенностями химического строения полимера, режимом механического воздействия, окружающей средой и т. д. Количественная форма этих связей может быть установлена только при всестороннем рассмотрении процесса механодеструкции (в частности, других следствий деструкции), а также при анализе влияния различных факторов на обсуждаемое явление.[4, С.62]

На скорость полимеризации и молекулярную массу полимера существенное влияние оказывают различные примеси и кислород воздуха, причем кислород в зависимости от природы мономера и условий полимеризации может ускорять или замедлять' полимеризацию. Кислород замедляет фотополимеризацию винилацетата, но ускоряет фотополимеризацию стирола, ингибирует инициированную перекисью бензоила полимеризацию винилхлорида, которая с хорошим выходом полимера и высоким значением молекулярной массы протекает в атмосфере азота или аргона. Поэтому для получения полимеров используют мономеры высокой степени чистоты (~99%) и проводят технологический процесс в атмосфере инертного газа.[3, С.48]

Этот вид полимеризации, связанный с возникновением ион-радикалов, интересен тем, что дает возможность получать «живые» полимерные цепи, т. е. растущий макробианион длительное время способен возбуждать полимеризацию при добавлении новых порций мономера. Обрыв цепи даже способами передачи на растворитель или мономер исключен полностью. Полимеризация' прекращается только после исчерпания всего мономера. Полимеры, получаемые этим способом, характеризуются высоким значением молекулярной массы и малой полидисперсностью.[3, С.52]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
4. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
5. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
6. Виноградов Г.В. Реология полимеров, 1977, 440 с.
7. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную