На главную

Статья по теме: Частичное разрушение

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Как было показано Е. Е. Сегаловой с сотрудниками [42], частичное разрушение на начальных стадиях кристаллизации может способствовать повышению прочности окончательно образующихся структур твердения минеральных вяжущих, так как предотвращает возникновение больших внутренних напряжений при срастании кристаллов в условиях высоких начальных пересыщений. Тем же целям может служить применение модифицирующих добавок поверхностно-активных веществ, регулирующих скорость твердения и форму образующихся кристаллов.[7, С.27]

Можно предполагать, что при длительном воздействии световой радиации происходи! частичное разрушение полисопряженных структур (ПСС) в макромолекуле ацетага целлюлозы (АЦ), и тем самым частичное обесцвечивание ацетатов целлюлозы и пластических масс на их основе. При этом известно (75), что для разрыва связи С = С достаточно 358 кДж/моль. Этой энергией обладает коротковолновая часть спектра (область до 310 км), которая составляет на поверхности Земли до 5% от общего солнечного излучения.[8, С.76]

Основной фактор, обусловливающий изменение структуры и свойств резины в процессе регенерации,— это деструкция трехмерной сетки вулканизата и частичное разрушение адсорбционных связей каучук — технический углерод, технический углерод — технический углерод. При регенерации происходит термическая деструкция связей серы, в результате чего их содержание в регенерате уменьшается. Многие вновь образовавшиеся связи в регенерате являются углерод-углеродными.[10, С.145]

Структурной единицей в такой системе является кинетический сегмент полимерной цепи. В результате теплового движения в концентрированном растворе сольватированные макромолекулы ассоциируются в лабильные флуктуационные образования (пачки, пучки макромолекул), время жизни которых невелико: они постоянно возникают и постоянно разрушаются в результате теплового движения, но благодаря большим молекулярным массам имеют конечные времена жизни (1СГ1 - 1(Г4 с). Такие пачки сольватированных макромолекул включают в себя статистически организованные участки взаимоупорядоченных сегментов полимерных цепей (домены), аналогично тому, как это имеет место в твердом состоянии полимеров. Между собой эти пачки контактируют как в результате включения проходных цепей, так и за счет поверхностных контактов. При плавном приложении к концентрированному раствору или расплаву полимера сдвигового усилия происходит частичное разрушение наиболее слабых межструктурных связей. Однако время, необходимое для восстановления частично разрушенной структуры (время релаксации), оказывается соизмеримым со временем деформирования системы, и это предопределяет проявление процесса деформации как течения высоковязкой жидкости гю (см. рис. 4.2). При больших напряжениях сдвига i происходят разукрупнение флуктуационных элементов структуры (ассоциа-тов, пачек сольватированных молекул), частичный распад их, а также ориентация структурных элементов в потоке. Это проявляется в возникновении на реограмме переходной зоны AZB (см. рис. 4.2), обусловленной снижением т)эф при возрастании т. При достаточно больших т происходят разрушение всех лабильных надмолекулярных образований в растворе или расплаве, а также максимальное распрямление и ориентация полимерных цепей в сдвиговом поле. Среднестатистические размеры кине-[1, С.173]

В начальных стадиях поликонденсации полимер имеет линейную структуру и сохраняет способность растворяться в бензоле, толуоле, хлорбензоле. После удаления растворителя остается твердая стекловидная пленка. В полимере содержится 13,15% алюминия и 18,56% кремния. При дальнейшем нагревании полимера без добавления воды происходит частичное разрушение кремний-углеродной связи[2, С.502]

Таким образом, в кристаллических полимерах механизм перехода исходного образца в шейку состоит в следующем: 1) полный распад кристаллических образований с последующей ориентацией сегментов, ранее входивших в состав неориентированного кристаллита, а теперь, после ориентации, образующих ориентированный кристаллит. Этот процесс называется рекристаллизацией; 2) частичное разрушение кристаллитов, перемещение кристаллических «обломков» в направлении деформации, ориентация сегментов, связывающих «обломки» между собой; 3) пластическая деформация кристаллитов по плоскостям скольжения и дислокациям 6e.t полного их разрушения; 4) деформация сферолитов в эллиптические образования за счет аморфной части (дефектов структуры) в них. Вклад каждой составляющей в общий механизм деформации точно не известен. Он определяется и типом полимера, и условиями деформации. Заметим только, что при полном развитии процесса образования шейки полимер в шейке высоко ориентирован и фибриллизован, поэтому на поздних стадиях образования шейки значительная часть кристаллических структур, повернутых или перемещенных без разрушения в направлении деформации, в конце концов также разрушается и сегменты ориентируются преимущественно в направлении деформации.[3, С.187]

Характерны изменения внешнего вида струи полимера, выходящего из канала. При приближении к критическому напряжению' сдвига на поверхности струи появляются матовость, затем шероховатость, а потом и неровности разного вида, потому что струя при движении в канале то отрывается от его стенок, то прилипает вновь. При достижении критического напряжения неровности могут быть настолько значительными, что форма струи совершенно искажается и даже происходит ее частичное разрушение с образованием отдельных кусков полимера неправильной формы.[3, С.164]

Любая система адгезив — субстрат характеризуется не только величиной адгезионной прочности, но и типом нарушения связи между компонентами, т. е. характером разрушения. Вопрос о характере разрушения имеет и теоретическое, и большое практическое значение: только зная слабое место системы, можно искать пути повышения ее работоспособности. Общепринятой является следующая классификация видов разрушений: адгезионное (адгезив целиком отделяется от субстрата), когезионное (разрыв происходит по массиву адгезива или субстрата), смешанное (наблюдается частичное отделение адгезива от субстрата, частичное разрушение субстрата и частичное разрушение адгезива). Все перечисленные виды разрушений схематически представлены на рис. IV. 1. Однако вопрос о классификации оказывается не таким уж простым. Учитывая влияние субстрата на структуру прилегающего слоя адгезива, можно предста-[9, С.161]

При исследовании влияния соотношения наполнитель — раствор на толщину адсорбционного слоя было установлено, что с увеличением концентрации порошка в системе вначале происходит резкое уменьшение Дг, затем при содержании наполнителя более 5,0% (об.) толщина адсорбционного слоя практически не зазисит от его концентрации в растворе. Это явление можно объяснить, если учесть, что в растворах полимеров и олигомеров наряду с отдельными макромолекулами существуют их агрегаты, которые при адсорбции переходят на поверхность наполнителей [33]. Это обусловливает образование довольно значительных адсорбционных слоев даже в случае таких сравнительно низкомолекулярных веществ, как олигомеры. Однако с ростом соотношения объем раствора — объем наполнителя агрегаты молекул попадают в поле действия все большего числа частиц наполнителя. При этом, возможно, происходит частичное разрушение агрегатов, что приводит в результате к уменьшению толщины адсорбционного слоя до некоторого конечного значения. В исследованных нами системах минимальная толщина слоя составляла 0,08 мкм. В дальнейшем все эксперименты, связанные с изучением влияния температуры и присутствия растворителя на толщину адсорбционного слоя, проводились в интервале концентраций наполнителя в системе 7,5— 11% (об.). • . -[6, С.189]

Соответствие экспериментальных значений концентрации активных цепей, определенных по равновесному набуханию и по содержанию золь-фракции, проверил А. С. Лыкин [41] на примере радиационных вулкани-затов НК, СКД и СКС-ЗОАРК. Оказалось, что в исследованном интервале степеней сшивания (от 0,5 -10~5 до 23-10~4 моль/см3) расхождение в результатах не превышает 20%, причем значения 1/Мс, определенные по равновесному набуханию, как правило, выше. К сожалению, только СКД до сшивания характеризовался наиболее вероятным ММР. Для НК и СКС исходное ММР оказалось значительно более широким. Автор полагает, что по мере облучения происходит не только сшивание, но и частичная деструкция цепей, вследствие чего ММР этих образцов после облучения значительной дозой (R ^ 8 Л1рад) становится 'практически наиболее вероятным. Однако имеющиеся данные показывают, что Р/а<0,1 как для НК, так и для СКС [45], вследствие чего высказанное предположение нуждается в дополнительном обосновании. Очевидно, нужны также и более надежные сопоставления значений 1/Мс, получаемых методом золь-гель анализа, с значениями, полученными ранее развитыми методами. Ограничение этого метода связано с ограниченными возможностями точного определения золь-1фракции: в густых сетках содержание золя очень мало и ошибка определения высока, а в очень редких сетках при экстракции возможно частичное разрушение сетки. В связи с этим метод дает хорошие результаты при анализе сеток умеренной густоты, обычно менее густых, чем характерно для реальных вулканиза-тов. Другая трудность состоит в необходимости точно определять ММР низкомолекулярной фракции, а не всего образца, так как именно этим показателем определяется содержание золь-фракции.[5, С.36]

Проведенные исследования показывают, что, по-видимому, частичное разрушение пачечных структур в растворе имеет место при температурах, которые намного ниже температуры плавления кристаллов. Разрушение пачечных структур ведет к замедленной кристаллизации.[12, С.182]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
5. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Манушин В.И. Целлюлоза, сложные эфиры целлюлозы и пластические массы на их основе, 2002, 107 с.
9. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
10. Шеин В.С. Основные процессы резинового производства, 1988, 160 с.
11. Виноградов Г.В. Реология полимеров, 1977, 440 с.
12. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
13. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
14. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
15. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную